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ABSTRACT: We show that there exist spurious states for the
sector two tensor Hamiltonian in multidimensional super-
symmetric quantum mechanics. For one-dimensional super-
symmetric quantum mechanics on an infinite domain, the
sector one and two Hamiltonians have identical spectra with
the exception of the ground state of the sector one. For
tensorial multidimensional supersymmetric quantum mechan-
ics, there exist normalizable spurious states for the sector two
Hamiltonian with energy equal to the ground state energy of
the sector one. These spurious states are annihilated by the
adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian
property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a
method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states
for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

I. INTRODUCTION

Supersymmetric quantum mechanics (SUSY-QM) has been
developed as an elegant analytical approach to one-dimensional
problems. The SUSY-QM formalism grew out of an effort to
generalize the ladder operator approach used in the treatment
of the harmonic oscillator. The ladder operator technique has
been utilized to solve quantum mechanics problems including
the Morse oscillator1 and the radial hydrogen atom equation.2

The result of a systematic study of this approach to quantum
mechanics led to the SUSY-QM approach.3−7 In analogy with
the harmonic oscillator Hamiltonian, the factorization of a one-
dimensional Hamiltonian can be achieved by introducing
charge operators. A hierarchy of isospectral sector Hamiltonians
can be constructed using the charge operators. For example, the
sector two Hamiltonian is isoenergetic with the spectrum of the
original Hamiltonian except possibly for the original ground
state. On infinite domains, the ground state of the sector two
one-dimensional Hamiltonian is degenerate with the first
excited state of the original Hamiltonian. The SUSY charge
operators can be used to convert the ground state wave
function of the sector two Hamiltonian into the first excited
state wave function of the sector one Hamiltonian.
In our previous studies, we have explored the use of SUSY-

QM as a computational tool for calculating accurate excited
state energies and wave functions.8,9 Using the isospectral
property of the SUSY sector Hamiltonians, we can apply

various methods specifically designed for the ground state to
the SUSY sector Hamiltonians to obtain excited state energies
and wave functions of the original Hamiltonian. For one-
dimensional systems, the variational Monte Carlo scheme8 and
the Rayleigh−Ritz variational method9 have been applied to the
SUSY sector Hamiltonians to obtain higher accuracy and more
rapid convergence for excited state energies and wave functions
for the original Hamiltonian.
In addition, several studies have been devoted to the

generalization of one-dimensional SUSY-QM to multidimen-
sional systems. Ioffe and collaborators have explored the use of
higher-order derivative charge operators,10−13 and Kravchenko
has explored the use of Clifford algebras.14 For the most part,
these methods have involved the introduction of new spin-like
variables. Moreover, we provided a generalization of SUSY-QM
to treat any number of dimensions or particles using a tensorial
operator approach.15 We demonstrated that the structure of the
degeneracies between sector Hamiltonians makes it possible to
achieve progress in more accurate calculations of excited state
energies and wave functions. Related issues associated with
generating a SUSY-QM hierarchy beyond the tensor sector two
Hamiltonian have been discussed.16,17 Stedman has described a
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similar treatment for multidimensional systems and presented
his equations for the hydrogen atom, but he has not solved any
of the higher sector equations, and his sector two Hamiltonian
possesses spurious states that do not have any connection with
the original physical Hamiltonian.18

For one-dimensional SUSY-QM on an infinite domain, the
sector one and two Hamiltonians have identical spectra with
the exception of the ground state of the sector one. For our
tensorial approach to multidimensional SUSY-QM, the
correspondence between the eigenstates of the sectors one
and two except for the ground state of the sector one is
established through the intertwining relations between the
charge operators and the sector Hamiltonians. However, in the
current study, we show that there exist spurious states for the
sector two Hamiltonian with energy equal to the ground state
energy of the sector one. Even for infinite domains, contrary to
our previous intuition, these spurious states are normalizable!
These normalizable spurious states are annihilated by the
adjoint charge operator, and the corresponding sector one
states vanish. Therefore, they do not correspond to physical
states for the original Hamiltonian and are therefore spurious.
In addition, we prove the orthogonality between spurious

and physical states due to the Hermitian property of the sector
two Hamiltonian. Furthermore, we provide an explicit method
for construction of the spurious states in a specific form for any
quantum system. Several specific spurious states are con-
structed for a two-dimensional anharmonic oscillator system
and for the hydrogen atom. It is emphasized that we do not
prove that all possible spurious states can be expressed in the
specific form. However, this specific expression provides a
straightforward method to generate spurious states for any
quantum system. Thus, there exists an infinite number of
spurious states for the sector two tensor Hamiltonian.
The organization of the remainder of this study is as follows.

In section II, we briefly review salient features of one-
dimensional SUSY-QM and present our new formulation of
the vectorial approach to multidimensional SUSY-QM. In
section III, spurious states for the sector two Hamiltonian are
discussed. In section IV, we develop an approach to
construction of a specific form of the spurious states and
generate several spurious states for a two-dimensional
anharmonic oscillator system and for the hydrogen atom. In
section V, we summarize our results and conclude with some
comments.

II. THEORETICAL FORMULATION
A. One-Dimensional Supersymmetric Quantum Me-

chanics. For one-dimensional SUSY-QM, the superpotential
W is defined in terms of the ground state wave function by the
Riccati substitution

∫ψ = − ′ ′x C W x x( ) exp[ ( )d ]
x

0
(1)

0
1 (1)

where C is the normalization constant. The superscript “(1)”
on the wave function and the subscript “1” on the
superpotential indicate that the ground state wave function
and the superpotential are associated with the sector one
Hamiltonian. It is assumed that eq 1 solves the Schrödinger
equation with energy equal to zero

ψ
ψ− + =

x
V

d

d
0

2
0
(1)

2 1 0
(1)

(2)

where, for convenience, we set ℏ = 2m = 1 throughout this
study. Setting the ground state energy to zero does not impose
any restriction since the energy can be changed by adding any
constant to the Hamiltonian. From eq 1, the superpotential can
be expressed in terms of the ground state wave function by

ψ= −W x
x

x( )
d

d
ln ( )1 0

(1)
(3)

Substituting eq 1 into the Schrödinger equation in eq 2, we
obtain the Riccati equation for the superpotential

− + =
W x

x
W x V x

d ( )
d

( ) ( ) 01
1

2
1 (4)

On the other hand, if W1 is known, then V1 is given by

= −V x W x
W x

x
( ) ( )

d ( )
d1 1

2 1
(5)

Obviously, the Schrödinger equation in eq 2 is equivalent to

ψ
ψ− + − =

⎛
⎝⎜

⎞
⎠⎟x

W
W
x

d

d
d
d

0
2

0
(1)

2 1
2 1

0
(1)

(6)

The Hamiltonian operator can be factorized by introducing the
charge operator and its adjoint (assuming W1 is hermitian; i.e.,
ψ0
(1) is real)

= +Q
x

W
d

d1 1 (7)

= − +†Q
x

W
d

d1 1 (8)

Then, the sector one Hamiltonian is defined as H1 = Q1
†Q1.

Since E0
(1) = 0 for n = 0, it follows from the Schrödinger

equation that for n > 0

ψ ψ=†Q Q En n n1 1
(1) (1) (1)

(9)

where ψn
(1) is an eigenstate of H1 with En

(1) ≠ 0. Applying Q1 to
this equation, we obtain

ψ ψ ψ= =†H Q Q Q Q E Q( ) ( ) ( )n n n n2 1
(1)

1 1 1
(1) (1)

1
(1)

(10)

where the sector two Hamiltonian is defined as H2 = Q1Q1
†.

Thus, Q1ψn
(1) is an eigenstate of H2 with the same energy En

(1) as
the state ψn

(1). Analogously, we consider the eigenstates of H2

ψ ψ ψ= =†H Q Q En n n n2
(2)

1 1
(2) (2) (2)

(11)

Applying Q1
† to this equation, we notice that Q1

†ψn
(2) is an

eigenstate of H1

ψ ψ ψ= =† † † †H Q Q Q Q E Q( ) ( )( ) ( )n n n n1 1
(2)

1 1 1
(2) (2)

1
(2)

(12)

It follows that the Hamiltonians H1 and H2 have identical
spectra with the possible exception of the ground state with E0

(1)

= 0. Additionally, for the ground state, Q1ψ0
(1) = 0, and this

shows that the quantity Q1ψ0
(1) cannot be used to generate the

ground state of the sector two Hamiltonian. Because of the
uniqueness of the ground state with E0

(1) = 0, the indexing of the
first and second sector levels must be modified. It is clear that
the eigenvalues and eigenfunctions of the two Hamiltonians H1
and H2 are related by
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ψ
ψ

ψ
ψ

= = =

=

+
+

+

+

†

E E E
Q

E

Q

E

0n n n
n

n

n
n

n

(2)
1

(1)
0
(1) (2) 1 1

(1)

1
(1)

1
(1) 1

(2)

(2)

Analogously, starting from H2 whose ground state energy is E0
(2)

= E1
(1), we can generate the sector three Hamiltonian H3 as a

SUSY partner of H2. This procedure can be continued until the
number of bound excited states supported by H1 is exhausted.
B. Multidimensional Supersymmetric Quantum Me-

chanics. In our previous studies,8,9,15 SUSY-QM has been
extended to multidimensional systems involving any number of
distinguishable particles. We employed a vectorial approach
that simultaneously treats more than one dimension and any
number of distinguishable particles. In our original formula-
tion,15 we defined an orthogonal hyperspace of dimension 3n
for a system of n particles in three-dimensional space. However,
this formulation fails to treat multielectron systems correctly
such as the helium atom. Thus, in the current study, we present
a new formulation for generalization of SUSY to multidimen-
sional systems, and the introduction of the hyper-dimensional
coordinate frames has been completely eliminated.
The Hamiltonian of an N particle system is given by

∑= − ℏ ∇ +
=

H
m

V
2 i

N

i1

2

1

2
1

(13)

where one has a complete set of orthogonal eigenstates {ψn
(1)}

and energies {En
(1)} for n = 0,1,2,.... For simplicity, we set the

masses of the particles to be equal and use units such that ℏ2/
2m = 1. In order to factorize the Hamiltonian into the sector
one SUSY form, we introduce a matrix notation so that the
kinetic energy can be expressed as

∑− ∇ = −∇⃗ −∇⃗ −∇⃗ ·

∇⃗

∇⃗
⋮

∇⃗

≡ ∇⃗ ·∇⃗
=

†

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
( , , ..., )

i

N

i N

N

1

2
1 2

1

2

(14)

where

∇⃗ = ̂ ∂
∂

+ ̂ ∂
∂

+ ̂ ∂
∂

i
x

j
y

k
zm

m m m

for m = 1, ..., N. Thus, the coordinates of all particles are
referenced to a single three-dimensional Cartesian frame. This
is a fundamental change from our original formulation,15 where
we embedded a separate coordinate frame in each particle in
the system. Now, all particle coordinates are measured relative
to a single Cartesian reference frame.
In quantum mechanics, the ground-state wave function is a

solution of the Schrödinger equation

ψ ψ=H E1 0
(1)

0
(0)

0
(1)

(15)

For a nodeless ground state, the exact ground state wave
function can be written as

ψ = − ⃗A e S u
0
(1) ( )

(16)

where A is a normalization constant, u⃗ = (u ⃗1, u ⃗2, ..., u ⃗N), and um⃗
= ix̂m + jŷm + kẑm for m = 1, ..., N. Then, the vector
superpotential W⃗ can be defined by the exact differential

= ⃗ ⃗ · ⃗ = ⃗ ⃗ ⃗ ·

⃗

⃗
⋮

⃗

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
S W u u W W W

u

u

u

d ( ) d ( , , ..., )

d

d

d

N

N

1 2

1

2

(17)

We emphasize that it is crucial to define the superpotential W⃗
in terms of a vector. It follows from this expression that the ith
particle’s superpotential is related to the ground state wave
function by

ψ⃗ = −∇⃗W lni i 0
(1)

(18)

Throughout this study, the ground state wave function is
assumed to be purely real; hence, the superpotential
components are real. From this equation, we can obtain (∇⃗
+ W⃗)ψ0

(1) = 0. In addition, the SUSY charge operator and its
adjoint operator are defined by

⃗ = ∇⃗ + ⃗ =
∇⃗ + ⃗

⋮

∇⃗ + ⃗

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
Q W

W

WN N

1 1

(19)

⃗ = −∇⃗ + ⃗ −∇⃗ + ⃗†
Q W W( , ..., )N N1 1 (20)

Then, we can write H1 in terms of W⃗ as

− = ⃗ · ⃗†
H E Q Q1 0

(1)
(21)

Thus, the sector one Hamiltonian H1 can be factorized by the
SUSY charge operators

= ⃗ · ⃗ +
†

H Q Q E1 0
(1)

(22)

It follows from eq 18 that the SUSY charge operator annihilates
the ground state of the system, Q⃗ψ0

(1) = 0, and this implies that
H1ψ0

(1) = E0
1ψ0

(1) as required.
Following the similar procedure in one-dimensional SUSY-

QM, we can construct the sector two Hamiltonian such that it
is isospectral with H1. For an excited state ψn

(1) (n ≠ 0) in the
sector one satisfying the Schrödinger equation H1ψn

(1) = En
1ψn

(1),
we write

ψ ψ⃗ · ⃗ + =
†

Q Q E E[ ] n n n0
(1) (1) (1) (1)

(23)

Forming the tensor product by operating on the left with Q⃗, we
obtain

ψ ψ⃗ ⃗ + ⃡ · ⃗ = ⃗†
Q Q E Q E Q[ 1] n n n0

(1) (1) (1) (1)
(24)

It follows that Q⃗ψn
(1) is an eigenstate of the sector two tensor

Hamiltonian

⃡ = ⃗ ⃗ + ⃡†
H Q Q E 12 0

(1)
(25)

with energy equal to En
(1). Hence, for any of the excited states in

the sector one Hamiltonian, Q⃗ψn
(1) generates an eigenstate of

the sector two Hamiltonian with the same energy. In particular,
Q⃗ψ0

(1) cannot give an eigenstate with energy equal to the ground
state energy E0

(1) because the SUSY charge operator annihilates
the ground state, Q⃗ψ0

(1) = 0.
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On the other hand, we consider the eigen-equation for the
sector two Hamiltonian

ψ ψ⃡ · ⃗ = ⃗λ λ λH E2
(2) (2) (2)

(26)

where ψ⃗λ
(2) = (ψ⃗λ1

(2), ψ⃗λ2
(2), ..., ψ⃗λN

(2))T is any column vector
eigenfunction. Forming the scalar product of the sector two
Hamiltonian with Q⃗†, we obtain

ψ ψ⃗ · ⃗ ⃗ + ⃡ · ⃗ = ⃗ · ⃗λ λ λ
† † †

Q Q Q E E Q[ 1]0
(1) (2) (2) (2)

(27)

Rearranging this equation yields

ψ ψ⃗ · ⃗ + ⃗ · ⃗ = ⃗ · ⃗λ λ λ
† † †

Q Q E Q E Q[ ]( ) ( )0
(1) (2) (2) (2)

(28)

From eq 22, we obtain H1(Q⃗
†·ψ⃗λ

(2)) = Eλ
(2)(Q⃗†·ψ⃗λ

(2)). Thus,
Q⃗†·ψ⃗λ

(2) is an eigenstate of the sector one Hamiltonian H1 with
energy Eλ

(2) (provided it is normalizable).
As shown in the above analysis, for any of the excited states

in the sector one Hamiltonian, Q⃗ψn
(1) generates an eigenstate of

the sector two Hamiltonian with the same energy. Analogously,
for any of the eigenstates in the sector two Hamiltonian,
Q⃗†·ψ⃗λ

(2) generates an eigenstate of the sector one Hamiltonian
with the same energy provided it is normalizable. The
eigenstates of these two sectors are connected by the SUSY
charge operator and its adjoint. As demonstrated in ref 15, the
correspondence between the eigenstates of the sector one and
two Hamiltonians except for the ground state of the sector one
is established through the intertwining relation and its adjoint

⃗ = ⃡ · ⃗Q H H Q1 2 (29)

⃗ · ⃡ = ⃗† †
Q H H Q2 1 (30)

Since the SUSY charge operator annihilates the ground state,
Q⃗ψ0

(1) = 0, H⃡2 is isospectral with H1 above the ground state of
H1. In the one-dimensional case, additional sector Hamil-
tonians, H3, etc., can be constructed until all of the states of H1
have been exhausted. However, up to now, this has not been
possible for multidimensions,15 so we must restrict our
consideration to H⃡2 and H1. Related issues concerning
generation of higher sector Hamiltonians have been pointed
out in ref 16 and responded to in ref 17.

III. SPURIOUS STATES FOR MULTIDIMENSIONAL
SUPERSYMMETRIC QUANTUM MECHANICS

A. One-Dimensional Case. We now further explore the
situation for sector two eigenstates with eigenvalues equal to
the sector one ground state energy. For one-dimensional
SUSY-QM, the sector one Hamiltonian is expressed in terms of
the SUSY charge operators by H1 = Q⃗1

†Q1 + E0
(1). As indicated in

eq 3, the charge operator annihilates the ground state of the
system, Q1ψ0

(1) = 0. From this equation, we can obtain the
ground state wave function in eq 1. In principle, we might
expect that the ground state of the sector two Hamiltonian H2
= Q1Q⃗1

† + E0
(1) is annihilated by the adjoint charge operator,

Q⃗1
†ψ0

(2) = 0. However, this equation implies that the ground
state is expressed in terms of W1 by

∫ψ = + ′ ′x N W x x( ) exp[ ( )d ]
x

0
(2)

0
1 (31)

If the domain of the position is finite, it is generally possible
that the ground state of the sector two Hamiltonian satisfies
Q⃗1

†ψ0
(2) = 0 with E0

(2) = E0
(1).19 However, for an unbounded

domain, since the ground state of H1 in eq 1 is square-

integrable, the expression above is not normalized. Therefore,
on infinite domains, the Hamiltonians H1 and H2 have identical
spectra with the exception of the ground state of H1.

B. Multidimensional Case. As shown in section II.B, for
any of the eigenstates in the sector two Hamiltonian H⃡2 = Q⃗Q⃗†

+ E0
(1)1⃡, Q⃗†·ψ⃗λ

(2) generates an apparent eigenstate of the sector
one Hamiltonian with the same energy. In particular, if there
exists a normalizable vector function ψ⃗ such that Q⃗†·ψ⃗ = 0, then
this function satisfies the vector Schrödinger equation for the
sector two Hamiltonian

ψ ψ ψ ψ⃡ · ⃗ = ⃗ ⃗ · ⃗ + ⃡ · ⃗ = ⃗
†

H Q Q E E12 0
(1)

0
(1)

(32)

This equation indicates that the vector function ψ⃗ is an
eigenstate of H⃡2 with energy equal to the ground state of H1.
Analogous to one-dimensional SUSY-QM, we might think that
functions satisfying Q⃗†·ψ⃗ = 0 cannot be normalized, so that the
ground state of H⃡2 has the same energy as the first-excited state
of H1. However, this is not the case for multidimensional
SUSY-QM. Actually, there exist such vector functions that not
only satisfy Q⃗†·ψ⃗ = 0 but that are also normalizable. The
normalizable vector function ψ⃗ with N vector components
implies that the sum of the integrals of the square of the
absolute value for each component is finite

∫ ∫∑ψ ψ τ ψ τ⃗*· ⃗ = | ⃗ | < ∞
=

d d
i

N

i
1

2

(33)

As an example, we consider a two-dimensional separable
harmonic oscillator system, and the sector one Hamiltonian is
given by eq 13 with V(x,y) = x2 + y2 − 2. For simplicity, we
denote the coordinates by x and y instead of u1 and u2. The
analytical expression of the sector one ground state wave
function with E0

(1) = 0 is given by

ψ = − +
⎡
⎣⎢

⎤
⎦⎥x y C x y( , ) exp

1
2

( )0
(1) 2 2

(34)

where C is a normalization constant. Substituting this
expression into eq 18 gives the corresponding vector
superpotential, W1 = x and W2 = y. Then, the sector two
Hamiltonian is constructed from the charge operators in eqs 19
and 20

⃡ = ⃗ ⃗ + ⃡

=

− ∂
∂

+ + − ∂
∂ ∂

+ − ∂
∂

+ ∂
∂

− ∂
∂ ∂

+ − ∂
∂

+ ∂
∂

− ∂
∂

+ +

†

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

H Q Q E

x
x

x y
xy x

y
y

x

x y
xy y

x
x

y y
y

1

1

1

2 0
(1)

2

2
2

2

2 2

2
2

(35)

For the sector one Hamiltonian H1, there are two degenerate
first-excited states with E1

(1) = 2

ψ ∝ − +x e x y
(1,0)
(1) ( )/22 2

(36)

ψ ∝ − +y e x y
(0,1)
(1) ( )/22 2

(37)

Applying the charge operator Q⃗ to these two states, we obtain
the doubly degenerate states for the sector two Hamiltonian H⃡2

ψ ψ⃗ = ⃗ ∝ − +Q (e , 0)x y T
(0)1
(2)

(1,0)
(1) ( )/22 2

(38)

ψ ψ⃗ = ⃗ ∝ − +Q (0, e )x y T
(0)2
(2)

(0,1)
(1) ( )/22 2

(39)
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It is straightforward to show that H⃡2·ψ⃗(0)k
(2) = E0

(2)ψ⃗(0)k
(2) with E0

(2) =
2 where k = 1 or 2. Originally, we expected that these two
doubly degenerate states are the ground states of H⃡2 because
the charge operator annihilates the ground state of the sector
one Hamiltonian Q⃗ψ0

(1) = 0. However, if we consider a
normalizable vector function

ψ ⃗ = − − + − +y x( e , e )x y x y T( )/2 ( )/22 2 2 2

(40)

then we find from eq 35 that H⃡2·ψ⃗ = E0
(1)ψ⃗ because of Q⃗†·ψ⃗ = 0.

This implies that the vector function is an eigenstate of the
sector two Hamiltonian with energy equal to E0

(1) = 0, which is
lower than E0

(2) = 2. Additionally, it is interesting to notice that
both of the two components for this vector function have
nodes. Thus, the two doubly degenerate states ψ⃗(0)1

(2) and ψ⃗(0)2
(2)

are not the ground states of the sector two Hamiltonian.
Furthermore, since the adjoint charge operator annihilates the
vector function Q⃗†·ψ⃗ = 0, this function does not produce a
corresponding physically allowed state for H1.
C. Orthogonality between Spurious and Physical

States. Because the sector two Hamiltonian is Hermitian,
eigenstates with different eigenvalues are orthogonal to each
other. All the spurious states have lowest energy equal to the
ground state energy of the sector one Hamiltonian, and hence
they are orthogonal to all the physical states. We can explicitly
prove the orthogonality between spurious and physical states of
the sector two Hamiltonian. We consider the inner product of a
spurious state with a physical state

∫ ψ ψ τ= ⃗ · ⃗λ λI dn n,
(2) (2)

(41)

where n and λ denote the physical state and the spurious state,
respectively. Expressing the physical state in terms of the sector
one state and using the integration by parts, we obtain

∫ ∫ψ ψ τ ψ ψ τ= ⃗ · ⃗ = ⃗ · ⃗ =λ λ λ+ +
†

I Q d Q d 0n n n, 1
(1) (2)

1
(1) (2)

(42)

where Q⃗† · ψ⃗λ
(2) = 0 has been used. Therefore, the vanishing

inner product indicates that spurious states are orthogonal to
physical states.

IV. SPURIOUS STATES OF A SPECIFIC FORM
A. Spurious States for Two-Dimensional Systems.

Although any normalizable vector function satisfying Q⃗†·ψ⃗ = 0
= ψ(1) is an eigenstate of H⃡2 with energy equal to the ground
state energy of H1, these vector functions do not yield
corresponding normalizable, physically allowed states for H1.
Hence, these functions are called spurious states. As shown in
section III.B, the vector function in eq 40 is a spurious state of
H⃡2 for the two-dimensional separable harmonic oscillator
system.
Actually, there exists a trivial spurious state for any two-

dimensional system. We consider a two-dimensional system
with the ground state wave function ψ0(x,y). From eq 18, we
can obtain the two components of the superpotential W1 = −∂
ln ψ0/∂x and W2 = −∂ ln ψ0/∂y. The trivial spurious state is
given by

ψ
ψ
ψ

ψ

ψ
⃗ = =

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

W

Wsp
1

2

2 0

1 0 (43)

Applying the adjoint charge operator to this state, we have

ψ ψ ψ ψ ψ

ψ ψ ψ ψ

⃗ · ⃗ = − ∂
∂

− − − ∂
∂

+

= ∂
∂

− ∂
∂

= − ∂
∂ ∂

+ ∂
∂ ∂

=

†
Q

x
W W W

y
W W W

x
W

y
W

x y x y

( ) ( )

( ) ( ) 0

sp 2 0 1 2 0 1 0 1 2 0

2 0 1 0

2

0

2

0

(44)

where the relationship between the ground state wave function
and the superpotential in eq 18 has been used. Therefore, we
have shown that there exists a trivial spurious state in eq 43 for
any two-dimensional system. In fact, the spurious state in eq 40
for the two-dimensional separable harmonic oscillator system is
the trivial spurious state with W1 = x and W2 = y.
Furthermore, we can construct an infinite family of spurious

states for any two-dimensional system. We suppose a spurious
state of the specific form

ψ
ψ

ψ

ψ

ψ
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⎝
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nsp
1

2

0

0 (45)

where n is a positive integer. Given arbitrary u(x) and v(y),
f(x,y) and g(x,y) are determined by

= + −
∂

∂

⎡
⎣⎢

⎤
⎦⎥f x y u x n v y W x y

v y
y

( , ) ( ) ( 1) ( ) ( , )
( )

2
(46)

= + − ∂
∂

⎡
⎣⎢

⎤
⎦⎥g x y v y n u x W x y

u x
x

( , ) ( ) ( 1) ( ) ( , )
( )

1
(47)

It is straightforward to show that the spurious state expressed in
this specific form satisfies the equation Q⃗†·ψ⃗sp = 0. Thus, we can
easily construct a spurious state by assigning appropriate u(x)
and v(y) to the specific expression in eq 45, so that the resulting
spurious state is normalizable. As a special case, if we choose n
= 1 and u(x) = v(y) = 1/√2, we recover the trivial spurious
state in eq 43. In fact, we do not need to require n in eq 45 to
be a positive integer. The number n can be any real, positive
number such that the spurious state in eq 45 is normalizable.
As an example, we consider a two-dimensional nonseparable

nondegenerate system with the ground state wave function
given by

ψ = − − − − −x y C x y x x y y( , ) exp[ 2 2 2 ]0
2 2 2 2

(48)

where C is a normalization constant. The superpotential is
given by

= + +W x y xy x( , ) 4 2 11
2

(49)

= + +W x y x y y( , ) 4 2 2 22
2

(50)

In this case, we choose n = 2, u(x) = x2, and v(y) = ey, and the
two components for the spurious state in eq 45 become

ψ ψ= − + + −x y x x y y x y( , ) e (12 6 2 3 2 1) ( , )y
1

2 2
0

2

(51)

ψ ψ= + + −x y x x y x x x y( , ) e (12 6 3 2) ( , )y
2

2 2 2
0

2
(52)

It is straightforward to check that the spurious state is
normalizable and satisfies Q⃗†·ψ⃗sp = 0. Thus, more complicated
spurious states can be readily constructed by assigning u(x) and
v(y).

B. Spurious States in Higher Dimensions. Analogous to
the two-dimensional case, trivial spurious states can be readily
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constructed for three-dimensional systems. For a three-
dimensional system with the ground state wave function
ψ0(x,y,z), it follows from eq 18 that the three components of
the superpotential are given by W1 = −∂ ln ψ0/∂x, W2 = −∂ ln
ψ0/∂y, and W3 = −∂ ln ψ0/∂z. The trivial spurious states for the
three-dimensional system are expressed by

ψ ψ ψ⃗ = −W W( , , 0)T
sp 1 2 0 1 0 (53)

ψ ψ ψ⃗ = −W W( , 0, )T
sp 2 3 0 1 0 (54)

ψ ψ ψ⃗ = −W W(0, , )T
sp 3 3 0 2 0 (55)

In a similar manner to eq 44, we can show that these states
satisfy Q⃗†·ψ⃗sp = 0. Obviously, since Q⃗† is linear, any linear
combination of spurious states yields another spurious state.
Let ψ⃗′ = ψ⃗sp1 + ψ⃗sp2, and we obtain Q⃗†·ψ⃗′ = Q⃗†·ψ⃗sp1 + Q⃗†·ψ⃗sp1 =
0. Thus, ψ⃗′ is also a spurious state. Moreover, the specific
expression in eq 45 used to construct spurious states for two-
dimensional systems can also be employed to construct
spurious states for three-dimensional systems. For example,
we can obtain a spurious state by assigning u(x) and w(z)
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(56)

where f(x,y,z) and h(x,y,z) are given by
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∂
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(58)

We simply need to ensure that the spurious state is
normalizable by choosing appropriate u(x) and w(z).
As an example, we consider the hydrogen atom, which is

nonseparable in Cartesian coordinates. The ground state wave
function is given by ψ0(x,y,z) = e−r where r = (x2 + y2 + z2)1/2.
Substituting the wave function into eq 18 gives the super-
potential W⃗ = (W1,W2,W3) = (x/r, y/r, z/r). From eqs 53 and
54, we obtain several spurious states for the hydrogen atom
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where ψ⃗′ = ψ⃗sp1 + ψ⃗sp2. It is easy to show that these states satisfy
the equation Q⃗†·ψ⃗sp = 0. Actually, more spurious states for the
hydrogen atom can be obtained, and the method used in the

construction of spurious states can be extended to higher
dimensions. As shown in Figure 1, for one-dimensional infinite

domain SUSY-QM, H1 and H2 have identical spectra with the
exception of the ground state ψ0

(1). However, for infinite domain
multidimensional SUSY-QM, there are an infinite number of
spurious states for the sector two Hamiltonian H⃡2 with energy
equal to the ground state energy of H1. In addition, we
emphasize that it is not proved that all possible spurious states
can be expressed in the specific form in eq 45. On the contrary,
the expression in eq 45 provides one approach to the
construction of the spurious states.

V. DISCUSSION AND CONCLUSIONS
We briefly reviewed one-dimensional SUSY-QM and presented
our new formulation of the vector approach to multidimen-
sional SUSY-QM. For one-dimensional infinite domain SUSY-
QM, the sector one and two Hamiltonians have identical
spectra with the exception of the ground state of the sector one.
For multidimensional infinite domain SUSY-QM, the corre-
spondence between the eigenstates of the sectors one and two
except for the ground state of the sector one is established
through the intertwining relations between the charge
operators and the sector Hamiltonians. However, there exist
spurious states for the sector two Hamiltonian with energy
equal to the ground state energy of the sector one Hamiltonian.
These normalizable spurious states are annihilated by the
adjoint charge operator, and hence, these states do not generate
normalizable, physical states for the sector one Hamiltonian. In
addition, because the sector two Hamiltonian is Hermitian, all
the spurious states are orthogonal to physical states.
Moreover, we presented a method for construction of the

spurious states of a specific form for any quantum system.
Several spurious states were constructed for a two-dimensional
anharmonic oscillator system and for the hydrogen atom.
Although it was not proved that all possible spurious states can
be expressed in the specific form, this specific expression
provides a straightforward method to generate spurious states
for any quantum system. Thus, there exists an infinite family of
spurious states for the sector two Hamiltonian.
In the companion article,20 we show how one may avoid

SUSY calculations in the tensor sector completely, so that all
calculations are done using a scalar sector one SUSY
Hamiltonian. In addition, the new approach totally eliminates
any potential problems due to spurious sector two states.

Figure 1. Comparison of one-dimensional and multidimensional
SUSY-QM for the sector one and two Hamiltonians. For one-
dimensional SUSY-QM, the sector one and two Hamiltonians have
identical spectra with the exception of the ground state of the sector
one. For multidimensional SUSY-QM, there are an infinite number of
spurious states for the sector two Hamiltonian with energy equal to
the ground state energy of the sector one Hamiltonian.
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