I. Overview of Paramagnetic NMR: Origins

II. Components of Paramagnetic Shifts
 Scalar / Contact
 Dipolar / Pseudocontact

III. Applications
 A. Electronic Structure & Spin Distribution
 B. Stereochem and Structure
 C. Equilibrium Dynamics & Solvation
 D. Lanthanide Shift Reagents
 E. Bioinorganic Applications
 F. Contrast agents for MRI

Paramagnetic 1H NMR

Was initially ignored because people thought the signals would be so broad as to be useless.

“They” were wrong, sometimes.

Do see Broader lines. But the range of δ increases hugely. Broadening from fast Spin-Lattice Relaxation (T_{1N}). If lines are too broad, will often give useful EPR. If e- relaxation times are fast enough, T_{1N} is unaffected. Many paramag. cmpds have paramag 1H NMR & EPR.
Paramagnetic 1H NMR

The presence of a paramagnetic metal ion causes line broadening of all NMR signals from nuclei close to the metal ion: too close, too broad to be seen!

The radius of the "blind" sphere depends on the metal ion.

The size of the blind sphere changes with the nuclear type, being smaller for 13C than for 1H.

The effect decreases rapidly with increasing distances from metal ion, so that it is negligible outside of an outer "paramagnetic effects" sphere.

"Blind Sphere"

1H paramagnetic line broadening in the presence of various metal ions shown as a function of the typical values of the electron relaxation time, for a molecule with a reorientation time of 10 ns at 298 K and 900 MHz of proton Larmor frequency, and a metal-nucleus distance of 10 Å.
Paramagnetic 1H NMR

3 Questions

1. Why do we see any NMR at all?
2. Why are shifts so huge?
3. Why CH$_3$ downfield and NH$_2$ upfield?

Paramagnetic 1H NMR: Relaxation Time

If relaxation time of nuclear spins is too fast, no change in observed magnetization is possible: $T_2 \ll T_1 \Rightarrow M = 0$.

With unpaired e-spin, relaxation of e-spin provides another mechanism for Nuclear spins:

T_1 (nucleus) $\rightarrow 0$

NMR broadens into baseline.

Paramagnetic NMR occurs only if T_1 (electron) very fast, so that e-spin is averaged over NMR lifetime.
When Do We See Paramagnetic NMR?

The is very fast compared to NMR if the ground spin state is multiply degenerate.

\[\text{e.g.} \quad S = - \frac{1}{2} \quad \text{and} \quad T = \frac{1}{2} \]

\[t_{2g}^+ - \quad t_{2g}^- \]

When Do We See Paramagnetic NMR?

i.e. When is \(c \)-spin lifetime very short?

1) When the ground state is multiply degenerate (\(T \) ground state)

2) When zero field splitting occurs and permits rapid relaxation
When Do We See Paramagnetic NMR?

Octahedral

<table>
<thead>
<tr>
<th>d^1</th>
<th>d^2</th>
<th>d^3</th>
<th>d^4</th>
<th>d^5</th>
<th>d^6</th>
<th>d^7</th>
<th>d^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>LS</td>
<td>HS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
</tr>
</tbody>
</table>

6 Coord Octahedral:

<table>
<thead>
<tr>
<th>d^2</th>
<th>d^3</th>
<th>d^4</th>
<th>d^5</th>
<th>d^6</th>
<th>d^7</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td>VIII</td>
<td>IX</td>
<td>IX</td>
<td>IX</td>
<td>IX</td>
</tr>
<tr>
<td>MnIII</td>
<td>FeIII</td>
<td>CoIII</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HS d^7 (d6 Fe or 2Fe)

Tetrahedral

<table>
<thead>
<tr>
<th>d^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>other T ground states</td>
</tr>
</tbody>
</table>

CoIII, NiII
CrIII, FeIII

Paramagnetic NMR Chemical Shifts

- e spin is small, but its proximity to nucleus is large.

- Big local magnetic field due to unpaired spin density.

- Big shielding/deshielding of nuclei.

- Big shifts (>100 ppm) possible.
Paramagnetic NMR Hamiltonian

\[\hat{H} = -g \beta \hat{H}_0 \cdot \hat{S} \quad \text{electron} \]
\[-g_N \beta_N \hat{H}_{0z} \hat{I} \quad \text{nuclear} \]
\[+ A \hat{I} \cdot \hat{S} \quad \text{e- - nuclear coupling} \]

These determine the energies of the different nuclear (and electronic) spin states (i.e., the Zeeman splitting for the nuclear spin states).

i.e., The Paramagnetic Chemical Shift.

Components of Paramagnetic Shifts

The components of Paramagnetic Shifts are separated into

Scalar or Contact Shift

vs.

Dipolar or Pseudo-Contact Shift

This division is really an artifact of viewing molecules through LCAO-MOT:

Both Shifts are due to the same coupling phenomenon of electron mag moment coupling to nuclear mag moment.
Components of Paramagnetic Shifts

Contact Shift – Consider the Electron and Nucleus as simply a coupled doublet,
But with a J \sim 1 \times 10^6 \text{ Hz} !

Not an equal coupling, so intensities are not equal, and the weighted mean position is not at midpoint. Under fast relaxation, doublet collapses into a singlet far away from the original nuclear chemical shift.

Dipolar Shift – through space interaction between electron & nucleus, also called pseudo-contact shift, often small in magnitude.

Scalar or Contact Coupling

Due to direct overlap of unpaired e- spin density at the nucleus: “Fermi” contact.

If we assume isotropic unpaired e- density:

\[\vec{\mu}_{\text{scalar}} = A \vec{I} \cdot \vec{S}(e) \]

- Isotropic hyperfine coupling
- Nuclear spin moment
- Electron spin moment

\[\delta(e) = 0 \quad r \neq 0 \]
\[\delta(e) = 1 \quad r = 0 \]
Scalar or Contact Coupling

For an $S = \frac{1}{2}$ system,

$$A = \frac{\beta n e B}{3} \left(g_N B_N \right) \left| \psi(\theta) \right|^2$$

$$\vec{A}_{\text{Scalar}} = A \vec{I} \cdot \vec{S}(r) \quad \text{built into } \psi(\theta)$$

$$= A \vec{I} \cdot \frac{g_\text{av} \beta A S(S+1)}{3kT} \quad \text{avg. spin polarization}$$

Define an H_{eff} that converts the energy splitting into an effective mag field change:

$$\vec{H}_{\text{eff}} = A \frac{g_\text{av} \beta S(S+1)}{3kT} \vec{H}$$

$$= \text{Difference of Diamagnetic and Scalar Paramagnetic Fields at Nucleus}$$

Scalar or Contact Coupling

Scalar Contribution to isotropic shift is

$$\frac{H_{\text{eff}}}{H} = \frac{\Delta J}{V} = \frac{A g_\text{av} \beta S(S+1)}{g_N B_N} \frac{1}{3kT}$$

Scalar Term is "Through bonds" only. Depends on $|\psi(0)|^2 \neq 0$

Note A is Tamp Independent but ΔJ is not.
Temperature Dependence of Scalar Coupling

For comparison, H₂TPP has δ = 9 ppm

Through-Bond Propagation of Fermi Contact (i.e., Scalar Coupling) via Spin-Transfer

3 classes:

- \(L \rightarrow M \) σ spin transfer
- \(L \rightarrow M \) π spin transfer
- \(M \rightarrow L \) back π spin transfer

Indirect intra-molecular orbital spin Polarization

e.g., \(L \rightarrow M \):

\(\Psi_b \) not pure d orbital \(\Rightarrow \) L→M spin transfer
Dipolar or Pseudo-Contact Coupling

If unpaired e- spin density is NOT isotropic, then dipole-dipole interactions “through space” can occur between the e- spin density and the nucleus.

For an axial system, ICBST:

\[\Delta H_{pc} / H = \Delta \nu_{pc} / \nu = \frac{\beta^2 S(S+1)(1-3\cos^2 \theta)}{9 kT \cdot r^2} \cdot (g_\parallel^2 - g_\perp^2) \]

Two Contributors to Paramagnetic Shifts

1. Fermi Contact (Scalar)
 - Direct Coupling of nuclear & electron spins
 - Due to unpaired e- spin density at nucleus
 \[\frac{\Delta \nu_{fc}}{\nu} = \frac{A g_e B S(S+1)}{g_H \beta \mu_B 3kT} \]
 - “Through Bonds”

2. Pseudocontact, Dipole Coupling
 - Dipole-Dipole Interaction
 - Due to Anisotropic Unpaired e- Spin Density
 “Through Space”
 \[\Delta \nu_{pc} / \nu = \frac{\beta^2 S(S+1) (1-3\cos^2 \theta)}{9kT \cdot r^2} \cdot (g_\parallel^2 - g_\perp^2) \]
 For axial system with localized Paramagnetic
Where is Paramagnetic NMR Useful?

- Inorganic – any metal that has unpaired e- will cause chemical shift range to be extremely large.
- Proteins – many proteins contain paramagnetic ions (often Fe$^{3+}$) in their active site. But one can also substitute paramagnetics (e.g., Co$^{2+}$ for Zn$^{2+}$) into the protein to spread out the chemical shifts near the active site.

Applications
A. Electronic Structure & Spin Distribution
B. Stereochem and Structure
C. Equilibrium Dynamics & Solvation
D. Lanthanide Shift Reagents
E. Bioinorganic Applications
F. Contrast agents for MRI

Size of Paramagnetic Chemical Shifts

<table>
<thead>
<tr>
<th>Metallocene</th>
<th>Paramag Shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_5H_5)$_2\text{Ni}$</td>
<td>+1436 ppm, -263 ppm</td>
</tr>
<tr>
<td>(C_5H_5)$_2\text{Co}$</td>
<td>+577 ppm, -52 ppm</td>
</tr>
<tr>
<td>(C_5H_5)$_2\text{Cr}$</td>
<td>-328 ppm, +324 ppm</td>
</tr>
<tr>
<td>(C_5H_5)$_2\text{V}$</td>
<td>-588 ppm, +315 ppm</td>
</tr>
</tbody>
</table>

relative to diamag Fe(C_5H_5)$_2$

some as high as +3000 ppm for 12
+460 ppm for 15
Classic Early Paramagnetic NMR:
Bob Connick, 1960’s
Water exchange rates coordinated to metal ions

$$M^{(17}O) \xrightleftharpoons[H_2O] M^{(16}O)_{x-1}(OH_2)$$

Line broadening of ^{17}O NMR gives
rate of H_2O exchange

Increasing Temp

Chemical Shift Range for Paramagnetic NMR

Particularly useful when studying Fe Porphyrins
$Fe^{+3} = d^5$, $Fe^{+2} = d^6$ (may be diamagnetic)

Study undertaken to connect oxidized heme, called an oxophlorin to verdoheme, a known heme breakdown product.

Colors of bruise are due to breakdown of heme to bilirubin (yellow).

Endogenous production of CO!
Heme Degradation

Heme Degradation: Oxophlorin

Figure 1. Drawings of the dimer 3 with \(a-d = H \) and \(m, m' = H \) obtained from molecular mechanics calculations. The top shows a stick diagram with hydrogen atoms omitted while the bottom shows a space filling model that includes the hydrogen atoms.
Heme Degradation: Oxophlorin

b, b' etc. mean methylene H are diastereotopic: dimerization makes opposite sides of ring inequivalent.

Iron (III)Octaethylporphyrin chloride, ClFeOEP

Shifts of Fe(OEP)Cl

S=5/2, 5 coordinate
CH₃’s show up at 6.7ppm
CH₂’s show up at 44.5 & 40.5ppm
meso H’s show up at −56.1ppm

Methylenes are diastereotopic: top and bottom of molecule are not equivalent.

Table 1. ¹H NMR Parameters for Iron Octaethylporphyrine Complexes

<table>
<thead>
<tr>
<th>compound</th>
<th>spin state</th>
<th>coordination</th>
<th>no.</th>
<th>meso</th>
<th>methylene</th>
<th>methyls</th>
<th>solvent</th>
<th>F, C*</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClFe¹¹⁺(OEP)</td>
<td>s</td>
<td>3</td>
<td>56.1</td>
<td>44.5, 40.9</td>
<td>6.7</td>
<td>CDCl₃</td>
<td>29</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>OFe⁷⁺(OEP)H₂</td>
<td>s</td>
<td>5</td>
<td>5.5</td>
<td>6.06, 5.10</td>
<td>1.75</td>
<td>CDCl₃</td>
<td>29</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>(N-MelO)Fe⁷⁺(OEP)</td>
<td>s</td>
<td>5</td>
<td>6.5</td>
<td>5.5, 6.26</td>
<td>1.76</td>
<td>toluene-d₈</td>
<td>75</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Fe⁷⁺(OEP)</td>
<td>s</td>
<td>4</td>
<td>76.3</td>
<td>33.8</td>
<td>12.9</td>
<td>benzene-d₆</td>
<td>25</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

Shifts of Fe(OEP)Cl

S=5/2, 5 coordinate
CH₃'s show up at 6.7ppm
CH₂'s show up at 44.5 & 40.5ppm
meso H's show up at -56.1ppm

Methylenes are diastereotopic: top and bottom of molecule are not equivalent.

Iron (III)Octaethylporphyrin chloride, C1FeOEP

Paramagnetic NMR of a Fe^{II} Tripyridyl Amine

Isotropic shifts resulting from dipolar and contact mechanisms in Fe^{II} TPA complexes

[Fe(TPA)(SPh)]^+
Active Site of β-Lactamase

- β-lactamase enzyme cleaves the lactam ring, preventing the drugs from killing bacteria. It is a protective enzyme in bacteria that imparts antibiotic resistance.
- Active site is ??
- Enzyme is a metalloenzyme but with Zn$^{+2}$, d10 and diamagnetic.
- Replace Zn$^{+2}$ with Co$^{+2}$ (just by ion exchange), and enzyme still retains activity.
- Co$^{+2}$ is paramagnetic. Parts of the protein close to the Co$^{+2}$ will show paramagnetic shifts.
Paramagnetic 1H NMR of Co(II) substituted β-lactamase

- See three strong signals in 45-55ppm range.
- When D$_2$O is added these peaks disappear.
- Suggests three different amino acids bind the metal containing exchangeable protons. The imidazole residue of Histidine binds metals, and have exchangeable protons.

Active Site of metallo-β-Lactamase

Scheme 2: Dinuclear Zn(II) Active Site of the *B. fragilis* Metallo-β-lactamase
Structural Uses of Paramagnetic NMR

Paramagnetic NMR Constraints

Nuclear relaxation provides metal-nucleus distances.

Pseudocontact shifts provide the angular coordinates of the metal ion and new structural constraints.

Contact shifts may provide dihedral angle constraints.

Structural Uses of Paramagnetic NMR

Diamagnetic Reference

Paramagnetic effects are measured as differences in NMR spectra recorded from the target molecule in the paramagnetic and diamagnetic states.

Data measured with a paramagnetic ion must be compared with corresponding data obtained with a chemically similar but diamagnetic metal ion.
Type II Cu2+ – Cu\textsubscript{2},Zn SOD

1H NMR

About 25\% of the proton signals are lost due to the influence of the highly paramagnetic copper ion

The final solution structure of monomeric Cu\textsubscript{2},Zn SOD

1767 NOE \textit{s}

28 H-bonds

144 Talos

140 + 46 Tailor

31+31 \textit{R}_{1}

\textbf{RMSD}_{\textit{bb}} = 1.1 \text{	extnormal{\AA}}

Lanthanide Shift Reagents (S.R.)

- S.R.s are paramagnetic Lewis Acids that bind to functional groups of organics with complex NMR.
- Subsequent paramagnetic shift reduces complexity and increases ease of assignments.
- Amount of shift can be used (under certain conditions) to calculate structures of the organic as bound to the S.R.
- Less useful these days with large field NMRs and multi-dimensional NMR.
- But S.R. became reborn as MRI contrast agents due to increased relaxation rates of interacting waters!

Lanthanide Shift Reagents (S.R.)

- Ln(dpm)$_3$
- Ln(Tod)$_3$
- Eu and Gd also common
- Optically active camphor derivative
- Eu, Pr both from Aldrich
Lanthanide Shift Reagents (S.R.)

NMR of di-n-butyl ether

\[\text{O[CH}_2\text{CH}_2\text{CH}_2\text{CH}_3]_2 \]

SR are idiosyncratic: rely on strength of Lewis acid-base interactions.

MRI Contrast Agents

- Chemical agents influencing the contrast behavior of magnetic resonance images and spectra. Commonly used agents include paramagnetic and superparamagnetic media.

- Contrary to x-ray contrast agents which are directly visible, magnetic resonance imaging contrast agents influence the behavior of the surrounding tissue; thus they are indirect contrast agents.
Traditional shift and contrast agents are largely based on high relaxivity Gd(III) complexes.

(1) Fe(III) is substantially less toxic than Gd(III) and therefore holds promise for eventual in vivo applications.

(2) The high relaxivity of Gd(III) complexes arises fundamentally from fast ligand exchange rates but comparatively weak f orbital based binding.