

Magnetic Term	Symbol	SI unit	CGS unit	conversion factor
magnetic induction	в	Tesla (T)	Gauss (G)	$1 T = 10^4 G$
magnetic field	Н	A/m	Oersted (Oe)	$1 \text{ A/m} = 4\pi/10^3 \text{ Oe}$
magnetization	М	A/m	emu/cm3	$1 \text{ A/m} = 10^{-3} \text{ emu /cm}^3$
mass magnetization	σ	Am ² /kg	emu/g	$1 \text{ Am}^2/\text{kg} = 1 \text{ emu/g}$
magnetic moment	m	Am ²	emu	$1 \text{ Am}^2 = 10^3 \text{ emu}$
volume susceptibility	κ	dimensionless	dimensionless	$4\pi(SI) = 1$ (cgs)
mass susceptibility	χ	m ³ /kg	emu/Oe∙ g	$1\ m^3/kg=10^3/4\pi\ emu\ /Oe\cdot\ g$
permeability of free space	μ	H/m	dimensionless	$4\pi x 10^{-7} \text{ H/m} = 1 \text{ (cgs)}$

he diamagnetic contribution of	lon	DC	lon	DC
e paired electrons in a molecule	Na ⁺	6.8	C0 ²⁺	12.8
equal to the sum of the	K ⁺	14.9	Co ³⁺	12.8
magnetic contributions (DC)	NH₄⁺	13.3	Ni ²⁺	12.8
n the constituent atoms and	Hg ²⁺	40	VO ²⁺	12.5
ıds	Fe ²⁺	12.8	Mn ³⁺	12.5
	Fe ³⁺	12.8	Cr ³⁺	12.5
$= \sum \gamma_{\text{start}} + \sum \gamma_{\text{barries}}$	Cu ²⁺	12.8	CI-	23.4
DC molecule – – Katom i – Kbond j	Br	34.6	SO42-	40.1
	ŀ	50.6	OH-	12
re X _{stom} ; and X _{band} ; are	NO3 ⁻	18.9	C2045-	34
pirically derived "Pascal's	CIO ₄ -	32	OAc ⁻	31.5
stants."	10 ₄ -	51.9	pyridine	49.2
	CN⁻	13	Me-pyr	60
Table of Pascal's constants	NCS ⁻	26.2	acac	62.5
(units of -10^{-6} cm ³)	H ₂ O	13	en	46.3
	EDTA4-	~150	urea	33.4

I	Ex	amples of diamagne	tic minerals
		Mineral	к (SI)
		Quartz (SiO ₂)	- (13-17) · 10 ⁻⁶
		Calcite (CaCO ₃)	- (8-39) · 10 ⁻⁶
	Ø	Graphite (C)	- (80-200) · 10 ⁻⁶
		Halite (NaCl)	- (10-16) · 10 ⁻⁶
		Sphalerite (ZnS)	- (0.77-19) · 10 ⁻⁶ Data from Hunt et al (1995)

I Simp	olifie	d Mag	gnetic N	lomer	nts vs. E	lectron Count
# unpaired e-	S	dn	H5.0.	ion	Mobs	
1	1⁄2	1	1, 73	T; 3+	1.85-2.08	The µ _{obs} can be
1	1⁄2	9	1.73	Cu ²⁺	1.96 - 2.5	greater than the
2	1	2	2.83	V 34	2-2.2	μ _{so} .
2	1	8	2.83	Ni2+	2.1-2.4	Why?
3	3/2	3	3.87			Orbital Contributions
3	3/2	7 HS	3.87	Co2+	>2,7	(i.e., SOC).
1	1⁄2	7 LS	1.73	62+	2.0	Mixing from XSs.
4	2	4	4,90	MM3H	4.8-4.9	
5	5/2	5	5.92	Fe ³⁴	5.3	

I Simplified	I Magn	etic N	Nome	nts vs. I	Electro	on Count
					w/ orbital contribution	Spin-only
Ion	config	O _h	Free Ion	1 Meff	g (^{J*(J+1))}	g (5*(5* 1)
Ti 3+	3d'	² T _{2g}	° 03/2	1.7 Meff	1.55	1, 73
V 3+	3d2	² T _{1g}	3F2	2.6-2.8	1.63	2.83
Cr 3+	3d ³	² A 2g	4 F3/2	38	0.77	3.87
Fezz	3d ⁶	⁵T _{2g}	5 Qy	5.5	6.70	4.90
Co2+	3d ⁷	⁴ T _{1g}	4 F. 1/2	4,1-5,2	6.63	3,87
Cu ²⁺	3d°	²Eg	20.5/2	1,7-2.2	3.55	1.73

Sim	olified Mag	netic M	oments	vs. Elect	ron Count
			Spin-only g (S*(S+1)) ^½	w/ orbital contribution g (J*(J+1)) ^½	
Ion	e- Config.	s	μ _s (μ _в)	μ _{5+L} (μ _β)	μ _{obs} (μ _B)
Ti³⁺	d1	1/2	1.73	3.01	1.7-1.8
V2+	d ²	1	2.83	4.49	2.8-3.1
Cr3+	d ³	3/2	3.87	5.21	3.7-3.9
Fe ³⁺	d⁵ (HS)	5/2	5.92	5.92	5.7-6.0
Ni ²⁺	d8 (HS)	1	2.83	4.49	2.9-3.9
Cu ²⁺	d ⁹	1/2	1.73	3.01	1.9-2.1
Deviat Orbita	ions from the s al (L) Contribution	pin-only valu	ie can occur	for the follo	wing reasons:
-	Can arise for p	artially fille	d (not ½ full)) t _{2g} orbitals	
Spin-o	rbit Coupling				
-	Increases the	moment for	d6, d7, d8, d9)	
-	Decreases the	moment for	d1, d2, d3, d	4	

Paramagnetism Alternatively : Orbital Momentum will contribute iff an é occupies a degenerate set of dorbitals that permits "circulation" of eabout an axis. i.e. a rotation must convert \$d orbital into another one of the degenerate set.

I	Exa	mples of paramagnetion	c minerals
		Mineral	к (SI)
		Olivine (Fe,Mg) ₂ SiO ₄	1.6 · 10 ⁻³
		Montmorillonite (clay)	0.34 ·10 ⁻³
		Siderite (FeCO ₃)	1.3-11.0 · 10 ⁻³
	No.	Serpentinite (Mg ₃ Si ₂ O ₅ (OH) ₄)	3.1-75.0 · 10 ⁻³
		Chromite (FeCr ₂ O ₄)	3-120 · 10 ⁻³
5 2012 K & Rusliek			Data from Hunt et al (1995)

Van Vleck Approximation
$$E_n = E_n^{(0)} + \vec{H} E_n^{(1)} + \vec{H}^2 E_n^{(2)} + \dots$$
magnetic moment = $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -\frac{\partial E_n}{\partial \mathcal{H}} = -E_i^{(1)} - \partial \mathcal{H} E_i^{(2)} + \dots$ $\mathcal{U} = -\frac{\partial E_n}{\partial \mathcal{H}} = -\frac{\partial E_$

Compound	$T_{\rm C}/{\rm K}$	Coupling
$CsMn^{II}[Cr^{III}(CN)_6] \cdot H_2O$	90	AF
$Mn^{II}_{3}[Cr^{III}(CN)_{6}]_{2} \cdot 12H_{2}O$	66	AF
Fell3[CrIII(CN)6]2•12H2O	16	F
$Co_{I_3}[Cr_{III}(CN)_6]_2 \cdot 12H_2O$	23	F
$Ni^{II}_3[Cr^{III}(CN)_6]_2 \cdot 12H_2O$	53	F
CsNi ^{II} [Cr ^{III} (CN) ₆]•2H ₂ O	89	F
$Cu_{II_3}[Cr_{III}(CN)_6]_2 \cdot 12H_2O$	66	F
$K_2Mn^{II}[Mn^{II}(CN)_6]$	41	AF
CsMn ^{II} [Mn ^{III} (CN) ₆]•H ₂ O	31	AF
$Mn^{II}_{3}[Mn^{III}(CN)_{6}]_{2} \cdot 12H_{2}O$	37	AF
$Co^{II_3}[Mn^{III}(CN)_6]_2 \cdot 12H_2O$	16	F
$C_{sNi}^{II}[Mn^{III}(CN)_{6}] \cdot H_{2}O$	42	F
$Ni_{3}[Mn_{11}(CN)_{6}]_{2} \cdot 12H_{2}O$	30	F
$Mn^{II}[Mn^{IV}(CN)_6] \cdot H_2O$	49	AF
Felli ₄ [Fell(CN) ₆] ₃ •15H ₂ O	5.6	F
$Mn^{II}_{3}[Fe^{III}(CN)_{6}]_{2} \cdot 12H_{2}O$	9	AF
Coll ₃ [Fell(CN) ₆] ₂ •12H ₂ O	15	AF
$Ni^{II_2}[Fe^{III}(CN)_6]_2 \cdot 12H_2O$	23	F
$Cu^{II}_{2}[Fe^{III}(CN)_{4}]_{2} \cdot 12H_{2}O$	21	F

