
CHAPTER 9

THE INTERPRETATION OF
EPR PARAMETERS

9.1 INTRODUCTION

An adequate interpretation of the parameters of the spin hamiltonian usually requires

the application of molecular quantum mechanics. We already noted the explicit

expressions for matrices g and D (Eqs. 4.41 and 4.42), as well as the relation of

the isotropic and anisotropic parts of the hyperfine matrix to jc (0)j2 (Eq. 2.38)

and kr23 l (Eq. 5.6a). In general, for quantitative interpretation, a large-scale analysis

by computer is required. Happily, however, relatively simple and successful analyti-

cal quantum-mechanical models exist that serve well for tutorial purposes. This

chapter introduces some of these techniques. One key aspect for EPR analysis is

to understand which, among the infinite number of electronic states, is the ground

state, and to realize its properties. Part of the power of EPR spectroscopy is that

(unlike optical spectroscopy) it deals only with spin transitions within a single

electronic state.

Before going further, we need to tighten up our knowledge of spin densities and

unpaired-electron populations.1 Like other densities, spin densities rs can be evalu-

ated in selected local regions and thus depend on location within a paramagnetic

atom or molecule. Thus they can be integrated over part or the total volume, yielding

dimensionless physically useful parameters r called the ‘unpaired-electron popu-

lations’ on the species considered.

There can be a simple proportionality between spin density krs ln at a

nucleus n and unpaired-electron population r (see Section 5.6). For example,
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krslp ¼ rjcjp
2 for atomic hydrogen; both functions are evaluated at the proton p [1,2].

In general, however, both are multi-electron functions.

Consider, as an example, a Gd(3þ) ion (S ¼ 7
2
) embedded in some complex. The

spin density is very high at the cation, with only small magnitudes occurring on the

nearest-neighbor ligands. The unpaired-electron population here is 7. In most free

radicals, r ¼ 1. More examples follow.

In situations where the anisotropic hyperfine splitting on some nucleus n can be

considered to be purely dipolar and is uniaxial (see Eqs. 5.48 and 5.49 near the limit

f ¼ 1), the distance r between the electron-spin species, requiring unpaired-electron

population correction factors k(e), and external nucleus n carrying a point magnetic

population [no corrections; k(n) ¼ 1 for all our purposes] can be approximated by

r ¼
m0

4p

� � gbegnbnk(e)k(n)

T?
(9:1)

and thus this distance can be estimated [3]. Matrix T is defined in Eq. 5.8, and is

expressed in energy units. We note that T? varies as approximately r23 and may

contain geometry factors. The distance r is, of course, set by the electromagnetic

quantum-mechanical interactions between all atoms present, and is hardly affected

by the magnetic dipole-dipole effect. The above Equation 9.1 may be compared to

its isotropic equivalent, Eq. 2.51.

Since we have considered the transition ions in Chapter 8, we focus in this chapter

on the interpretation of EPR parameters from free radicals and triplet states. Free

radicals are classified into organic radicals, inorganic radicals and point defects in

crystalline solids. A short discussion of EPR in metals and semiconductors is also

included.

It is useful to distinguish between s-type and p-type free radicals. The former

type features one unpaired electron in an orbital having no nodal plane, whereas

the latter has one unpaired electron in a molecular orbital that has such a symmetry

element. Often the nodal plane in p-type radicals extends over several atoms; this

arises from overlap between the p orbitals on each atom and implies that the

unpaired electron is delocalized over the system. By contrast, s-type radicals tend

to have unpaired electrons primarily localized on one atom.

9.2 p-TYPE ORGANIC RADICALS

Among the various molecular-orbital theoretical approaches [4], Hückel molecular-

orbital (HMO) theory is the simplest. We shall apply this theory to some relatively

simple paramagnetic species, with a view to understanding the isotropic hyperfine

splittings exhibited by these p-type radicals. Some details of HMO theory are to

be found in Appendix 9A at the end of this chapter.

Most of the radicals examined in Chapter 3 are conjugated molecules, containing

paired electrons in low-lying s orbitals and the remainder in p orbitals. The

distinguishing characteristic in modeling such compounds, diamagnetic or

254 THE INTERPRETATION OF EPR PARAMETERS



paramagnetic, is the overlap of p orbitals on adjacent atoms. Such overlapping

permits the electrons in these orbitals to be delocalized as a p system over the mol-

ecular skeleton. One may, to a good approximation, describe the energy states of

these electrons separately from those of the others, in terms of molecular orbitals

generated from linear combinations of the atomic 2pz orbitals. For example, each

of the six 2pz orbitals in benzene has a node in the molecular plane, defined to be

the xy plane. Hence the molecular orbitals arising from combinations of 2pz orbitals

(Tables 9A.1 and 9A.2) are referred to as p orbitals. The ground state of benzene

consists of three p orbitals containing six electrons, with the other three p orbitals

unoccupied.

Each unpaired electron of a p-type radical is expected to be distributed over the

molecular framework. For example, in the benzene monoanion the average relative

probability of finding its unpaired electron in the vicinity of any one carbon atom is
1
6
, as required by symmetry. For other monocyclic radicals a similar uniform distri-

bution should be found. The equivalence of each position in a given monocyclic

radical leads to the 1H hyperfine splitting patterns shown in Figs. 3.3a–h.

For radicals with lower symmetry, there is no such obvious guide to the unpaired-

electron distribution. The HMO approach provides valuable guidance toward deter-

mining this distribution. The information of interest is contained in the expression

for the particular spatial molecular orbital

ci ¼
Xn

j¼1

cijfj (9:2)

occupied by the unpaired electron. Here n is the number of atomic orbitals fj, which

are orthonormal. Since ci is normalized, one has

Xn

j¼1

jcijj
2 ¼ 1 (9:3)

The magnitude squared of the coefficient cij is the relative probability that the elec-

tron in molecular orbital ci is in atomic orbital fj. Thus jcijj
2 measures the unitless

unpaired p-electron population rj ‘on’ atom j when this atom bears only a single

orbital occurring in ci:

rj ¼ jcijj
2 (9:4)

It follows that

Xn

j¼1

rj ¼ 1 (9:5)

As an example, consider the radical anion of 1,3-butadiene [5]. The EPR

spectrum displayed in Fig. 3.7a was analyzed on the basis of a quintet of lines of

relative intensities 1 : 4 : 6 : 4 : 1 with a proton hyperfine splitting of 0.762 mT;
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each line of the quintet is split further into a 1 : 2 : 1 triplet with a proton hyperfine

splitting of 0.279 mT. The considerable difference between the two splitting ‘con-

stants’ suggests a highly non-uniform unpaired-electron distribution.

The butadiene anion has five p electrons. Reference to the molecular orbitals of

Table 9A.1 shows that, consistent with the Pauli exclusion principle, the unpaired

electron must reside in c3. From Eq. 9.4 the unpaired-electron populations are

found to be r1 ¼ r4 ¼ 0.36 and r2 ¼ r3 ¼ 0.14. Thus HMO theory predicts that

the end carbon atoms should have the higher unpaired-electron densities. We note

that these are indeed the positions at which the larger proton hyperfine splittings

are observed and that the ratio of the hyperfine splittings, a1/a2 ¼ 2.7,2 agrees

satisfactorily with the ratio of the unpaired-electron populations, r1/r2 ¼ 2.6.

This correspondence seems to point to some sort of linear relation between the

(isotropic) proton hyperfine splitting parameters ak and the unpaired p-electron

populations of the carbon atoms in p-type organic radicals. Indeed, such a relation

has been proposed [6–9]; it may be written for proton k as

ak ¼ Qrk (9:6)

where rk is the unpaired p-electron population at the adjacent carbon atom k and Q is

a proportionality constant expressed in magnetic-field units. The origin of Eq. 9.6 is

considered in Section 9.2.4. An examination of Fig. 9.1 shows that for most p-type

FIGURE 9.1 Experimental proton hyperfine splitting parameters ja0j versus HMO

unpaired-electron populations r for a group of aromatic hydrocarbon radical ions. Open

circles refer to positive ions and filled circles to negative ions. [After I. C. Lewis,

L. S. Singer, J. Chem. Phys., 43, 2712 (1965).]
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organic radicals the correlation (Eq. 9.6) is good. A similar and even more extensive

data set, featuring a good linear plot of the hydrogen 1s-orbital unpaired-electron

population against the adjacent carbon 2pz-orbital unpaired-electron population,

has been presented by Pople et al. [2]. Here, rather than the crude HMO method,

the much more advanced INDO molecular-orbital technique was utilized.3

Theoretical estimates of Q place it in the range from 22 to 23 mT. The significance

of the negative sign is explained in Section 9.2.4. The first confirmation of the negative

sign of Q in Eq. 9.6 was obtained by an analysis of the splittings in the malonic acid

radical (HOOC22CH22COOH), created by irradiation of the acid [10]. The simplest

p radical is, of course, methyl (CH3). It has S ¼ 1
2

and exhibits a proton hyperfine

splitting constant of 22.304 mT [11]. This agrees nicely with Eq. 9.6 with r ¼ 1,

providing strong evidence that CH3 indeed is planar (cf. CF3, Section 9.3).

In certain other molecules, it is possible to establish a value of Q semi-empirically

from the experimental hyperfine splittings. For instance, in the cyclic polyene rad-

icals C5H5 (cyclopentadienyl) (I), C6H6
þ, C7H7 (cycloheptatrienyl) (II) and C8H8

2 ,

which are planar, the unpaired-electron population is known from the molecular sym-

metry. Thus an experimental determination of the hyperfine splitting constant a in

these molecules provides an estimate of Q. Table 9.1 gives the experimental

values of a and the corresponding values of Q for these monocyclic radicals.

There is an appreciable variation in Q for these monocyclic radicals. If one com-

pares the values for the two neutral radicals or for the two negatively charged

TABLE 9.1 Proton Hyperfine Splitting Parameters for Monocyclic Radicals

Radical Temperature a (K) aH (mT) Q (mT) Reference

C5H5 �200 0.600 3.00 b

C6H6
þ 298 0.428 2.57 c

C6H6
– 173 0.375 2.25 d

C7H7 298 0.395 2.77 e, f

C8H8
– �298 0.321 2.57 g

a Some of the hyperfine splittings have been found to be temperature-dependent.b, c, f

b R. W. Fessenden, S. Ogawa, J. Am. Chem. Soc., 86, 3591 (1964). See also: M. Iwasaki, K. Toriyama,

K. Nunome, J. Chem. Soc., Chem. Commun., 320 (1983).
c M. K. Carter, G. Vincow, J. Chem. Phys., 47, 292 (1967).
d J. R. Bolton, Mol. Phys., 6, 219 (1963).
e A. Carrington, I. C. P. Smith, Mol. Phys., 7, 99 (1963).
f G. Vincow, M. L. Morrell, W. V. Volland, H. J. Dauben Jr., F. R. Hunter, J. Am. Chem. Soc., 87, 3527

(1965).
g T. J. Katz, H. L. Strauss, J. Chem. Phys., 32, 1873 (1960).
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radicals, the variation is much smaller, correctly suggesting that the charge on the

radical has some effect on Q.

An understanding of the hyperfine properties of protons in conjugated hydro-

carbon radicals is aided by classifying these as alternant or non-alternant. A mol-

ecule (and its ions) is defined as alternant if one may label alternate positions of

the carbon skeleton with an asterisk and have no two adjacent positions both

‘starred’ or both ‘unstarred’. All linear systems are alternant, as are also those

cyclic systems that have no rings made up of an odd number of atoms, for

example, anthracene (Fig. 3.9). In contrast, the C5H5 and C7H7 radicals are non-

alternant, as is the azulene anion (III). When there is more than one way of starring

atoms, by convention one adopts that designation that gives the largest number of

starred atoms. If the numbers of starred and of unstarred positions are equal, the

hydrocarbon is called even-alternant; if not, it is called odd-alternant.

Odd-alternant hydrocarbon radicals have a very useful property that permits rapid

calculation of the unpaired-electron populations without actually determining

molecular-orbital coefficients. As an example, consider the non-bonding semi-

occupied orbital c4 of the benzyl radical (C6H5CH2) (IV)

c4 ¼ 0f1 � 0:378f2 þ 0f3 þ 0:378f4 þ 0f5 � 0:378f6 þ 0:756f7 (9:7)

Having starred this odd-alternant radical appropriately, one assigns equal and oppo-

site coefficients about unstarred positions having two neighbors. One begins by

assigning the coefficient 2c to atom 2, þc to 4, 2c to 6, and finally þ2c to 7 to

cancel the contributions from atoms 2 and 6. The squares of the coefficients must

sum to unity; hence c ¼ 1/
ffiffiffi
7
p
¼ 0.378. The unpaired-electron population is then

1
7

at atoms 2, 4 and 6, and 4
7

at atom 7. The simple procedure employed here for deter-

mining r values saves much effort, as compared with the direct HMO calculation

(Problem 9A.4). This procedure may also be applied to even-alternant hydrocarbons

if non-bonding orbitals are present (e.g., cyclooctatetraene).
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The experimental hyperfine splittings for the benzyl radical (IV) are given in

Table 9.2. Using the splitting for position 7 to fix Q, the hyperfine splittings for pos-

itions 2, 4 and 6 are calculated to be 20.40 mT. No hyperfine splitting would be

expected for protons at positions 3 and 5 because the atomic orbital coefficients

are zero. The significance of the small positive hyperfine splitting observed for

protons at these positions is discussed later in this chapter. Although there are sig-

nificant deviations from predictions, one can regard the calculated values as being

in remarkable agreement with experiment, considering the crudity of the approach.

9.2.1 Anions and Cations of Benzene
and Some of Its Derivatives

Benzene represents a classic hydrocarbon for study of the effects of substituents in

removing the degeneracies of energy levels and for modifying the unpaired-electron

distribution in its +1 ions. In common with numerous other monocyclic systems, the

p HMO molecular orbital of lowest energy in benzene is non-degenerate; the next

four higher orbitals form degenerate pairs (Table 9A.2). It is customary to use the

group-theoretic labeling (group D6h). Here it is sufficient to note that e always

refers to degenerate pairs of orbitals, whereas a and b refer to non-degenerate orbi-

tals. The set of six molecular orbitals for benzene is given in Table 9A.2 in order of

increasing energy (bottom to top). The bracketed orbitals are degenerate. Note that

in the a orbital there is no change of sign and hence no vertical nodal plane. This is

the orbital of lowest energy. In increasing order of energy, the e1 orbitals have two

oppositely signed (þ/2) regions and a nodal plane, the e2 orbitals two nodal planes,

whereas the b orbital, that of highest energy, has three nodal planes.

In the benzene anion, the extra (7th) p electron is in the e2 set of orbitals, whereas

in the cation an electron is missing from the e1 set. Hyperfine splitting data for the

anion allow us to show how occupancy of the e2 orbitals changes with substitution of

the benzene ring.

The liquid-solution EPR spectrum of the benzene anion at 21008C is shown in

Fig. 3.4. The spectrum consists of seven lines with intensities characteristic of hyper-

fine interaction from six equivalent protons. This result is expected from the sym-

metry of the molecule, but it is instructive to see how it arises from the Hückel

TABLE 9.2 Benzyl Radicala Hyperfine Parameters ai (in mT)

Protons on

Carbon Atoms

1H Splitting Parameters ai

Experimental b,c HMO Calculated

2,6 20.49 20.40

4 20.61 20.40

7 (CH3) 21.59 (21.59)

3,5 þ0.15 0

a See structure IV.
b W. T. Dixon, R. O. C. Norman, J. Chem. Soc., 4857 (1964).
c A. Carrington, I. C. P. Smith, Mol. Phys., 9, 137 (1965).
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molecular orbitals given in Table 9A.2. The six p electrons of the neutral benzene go

into the three bonding molecular orbitals, but the addition of an extra electron to

make the benzene anion creates a new problem. The lowest unoccupied molecular

orbital in benzene is doubly degenerate. Hence the unpaired electron is expected

to occupy equally the two e2 antibonding molecular orbitals.4 The coefficients at

each of the atoms for these orbitals are given at the right of Fig. 9.2. It is evident

that the wavefunction of one e2 state, A, is antisymmetric with respect to reflection

in a vertical plane passing through carbon atoms labeled 1 and 4; S, the other, is sym-

metric with respect to reflection in the same plane. A is termed the ‘antisymmetric’

orbital and S the ‘symmetric’ orbital.

The total unpaired-electron population at a given position is obtained by taking

one-half the sum of the electron populations (squares of coefficients) at that

position for each of the two orbitals. For example, at positions 1 and 2,

r1 ¼
1
2

0þ 1
3

� �
¼ 1

6
and r2 ¼

1
2

1
4
þ 1

12

� �
¼ 1

6
. Thus all positions are equivalent.

Although in the benzene anion the orbitals A and S are, in the first approximation,

equally occupied, the population balance is extremely delicate. The introduction of

substituents serves to remove the degeneracy, that is, makes one orbital more ener-

getic than the other. Thus the effect of substituents on the EPR spectrum of the

benzene anion is best understood by considering the limiting spectra anticipated

when the unpaired-electron distribution approximates that of the A or of the S

orbitals.

The EPR spectrum in Fig. 9.2 is that of the p-xylene anion [12]. It is significant

that the splitting from the CH3 protons is too small to be resolved. This phenomenon

is to be expected when the unpaired electron resides predominantly in the A orbital.

FIGURE 9.2 EPR spectrum of the p-xylene anion, with the atomic orbital coefficients of

the antisymmetric (A) and symmetric (S) molecular orbitals of benzene at the right. The

symmetry is defined with respect to the perpendicular plane (dashed) passing through the

center of the molecule. Solvent is dimethoxyethane, and temperature is 2708C. [After J. R.

Bolton, A. Carrington, Mol. Phys., 4, 497 (1961).]
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The hyperfine splittings that have been observed for various methyl-substituted ben-

zenes are given in Fig. 9.3. The data show that the introduction into benzene of even

one CH3 group removes the degeneracy of A and S. The methyl groups are rapidly

rotating, that is, effectively linear. The electronic properties of the substituent deter-

mine whether the A or the S orbital has the lower energy. The methyl group is con-

sidered to be electron-releasing in conjugated systems. For the toluene anion, the A

orbital has a vertical nodal plane through the 1 and 4 positions, whereas the S orbital

has a large unpaired-electron population
�

1
3

�
at these positions. Repulsion between

the electrons on the methyl group and the large negative charge at positions 1, 2, 5

and 6 in the S orbital causes the latter to be destabilized relative to A.

The Q value of 22.25 mT for the benzene anion may be used to estimate the

toluene anion hyperfine splittings. Because of the node through the 1 and 4 positions,

one should expect little or no hyperfine splitting from the methyl protons or the proton

para to the methyl group. An unpaired-electron population of 1
4

should give rise to a

hyperfine splitting of �0.56 mT. The measured hyperfine splittings (Fig. 9.3) show

that the unpaired-electron distribution does approximate that of the A orbital.

Even the substitution of a deuterium nucleus for a proton in the benzene anion is

sufficient to bring about a measurable split of the energies of the S and A orbitals as

indicated by small departures of the proton hyperfine splittings from those in the

benzene anion [13].

FIGURE 9.3 Proton hyperfine splittings a (in gauss) for various methyl-substituted

benzene anions. Symbols A and S indicate whether the antisymmetric or the symmetric p

orbitals lie lowest for these molecules. [After J. R. Bolton, A. Carrington, Mol. Phys., 4,

497 (1961); J. R. Bolton, J. Chem. Phys., 41, 2455 (1964).]
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9.2.2 Anions and Cations of Polyacenes

For some of the EPR spectra analyzed in Chapter 3, it was not possible to assign the

observed hyperfine splittings on the basis of the spectrum alone. Thus, for the mono-

anion of naphthalene (VI) (Fig. 3.8), it is not obvious which set of four equivalent

protons should be assigned as yielding the larger hyperfine splitting. The same

uncertainty is found for the two quintet splittings in the spectrum (Fig. 3.9) of the

anion of anthracene (VII). It thus is very desirable to have a simple and rational

basis for the assignment of these hyperfine splittings, as presented here. In addition,

it is helpful that the relative magnitudes of hyperfine splittings can be predicted

without making detailed calculations.

In the HMO approximation, alternant hydrocarbons have orbital energies symme-

trically disposed about the central energy a. Odd-alternant hydrocarbons have a non-

bonding orbital at this energy (e.g., Fig. 9A.1). Orbitals with energies symmetrically

disposed about a involve the same atomic orbitals, with coefficients that have the

same absolute magnitudes. Therefore the squares of the coefficients of the highest

bonding orbital and of the lowest antibonding orbital of an even-alternant hydro-

carbon are identical. Hence the unpaired-electron distribution is predicted to be

identical in the cation and anion radicals corresponding to a given diamagnetic

parent. This statement is often referred to as the pairing theorem and is found to

apply to a high degree of approximation [14,15].

The EPR spectra of the anions and cations of some of the polyacenes

[naphthalene (VI), anthracene (VII), tetracene (VIII) and pentacene (IX)] have

been studied. The proton hyperfine splittings for these molecules are listed in

Table 9.3. It is evident that the hyperfine splittings are similar for protons in corre-

sponding positions in the anion and the cation of a given molecule. These results

are in reasonable accord with the pairing theorem. The agreement in reality is

even better than is apparent, since Q depends somewhat on the excess charge

density [16,17].

9.2.3 g Factors of p Radicals

The g factors of p radicals have been the focus of considerable theoretical attention,

basically using the theory outlined in Section 4.8. Typically, g� ge ¼ ð1 to 4Þ�

10�4. For aromatic radicals in the liquid phase, Stone [18,19] showed that

g� ge ¼ g(0) þ g(1)lþ g(2)l
2 (9:8)

where the g(i) are (semi-empirical) parameters and l is the coefficient of the reson-

ance integral b in the HMO of the unpaired electron. One can classify the excited

states required (Eqs. 4.38 and 4.41) to calculate g into different types; for

example, excitation of the odd p electron into an antibonding s orbital, and exci-

tation of any s-bonding electron into the semi-occupied p orbital. The theory fits

well except when there is a degenerate (or almost so) ground state, for example,

for the benzene radical anion, in which case complex corrections (for vibronic coup-

ling and ion pairing) must be made [20–22].
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9.2.4 Origin of Proton Hyperfine Splittings

As discussed, it has been found for planar conjugated organic radicals that proton

hyperfine splittings are proportional to the unpaired p-electron population on the

carbon adjacent to the proton (Eq. 9.6). Isotropic proton hyperfine splittings were

shown in Chapter 2 to arise when a net unpaired-electron density exists at the

TABLE 9.3 Proton Hyperfine Splitting Parameters in Polyacene Anions

and Cations

Molecule Position

jaþ
H
j

(mT)

ja2
H
j

(mT)

Naphthalene a (VI) 1 0.540 0.495

2 0.160 0.187

Anthracene b (VII) 9 0.6533 0.5337

1 0.3061 0.2740

2 0.1379 0.1509

Tetracene c (VIII) 5 0.5061 0.4226

1 0.1694 0.1541

2 0.1030 0.1162

Pentacened (IX) 6 0.5083 0.4263

5 0.3554 0.3032

1 0.0975 0.0915

2 0.0757 0.0870

a (þ) Estimated from simulating the X-band EPR spectrum taken in boric acid glass at �300 K;

G. Vincow, P. M. Johnson, J. Chem. Phys., 39, 1143 (1963) and G. S. Owen, G. Vincow, J. Chem.

Phys., 54, 368 (1971); (2) N. M. Atherton, S. I. Weissman, J. Am. Chem. Soc., 83, 1330 (1961).
b (þ) and (2) J. R. Bolton, G. K. Fraenkel, J. Chem. Phys., 40, 3307 (1964).
c (þ) J. S. Hyde, H. W. Brown, J. Chem. Phys., 37, 368 (1962); (þ) and (2) J. R. Bolton, unpublished

work [see J. R. Bolton, J. Chem. Phys., 71, 3702 (1967)].
d (þ) and (2) J. R. Bolton, J. Chem. Phys., 46, 408 (1967).
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proton. In p radicals, the unpaired electron can be considered to reside in a

p-molecular orbital constructed from a linear combination of 2pz carbon atomic

orbitals. However, each such 2pz orbital has a node in the plane of the molecule

and, since this plane also contains the adjacent proton, there should be no

unpaired-electron density at the proton and hence no hyperfine splitting. In spite

of this node, the numerous spectra in Chapter 3 demonstrate that isotropic proton

hyperfine splittings do occur in p radicals. Out-of-plane proton vibrations are

found to give a negligible effect. Rather, the concept of unpaired-electron

density must be reexamined in order to resolve this paradox. It was assumed that

an electron in a conjugated molecule does not influence the other electrons in

the radical. However, in reality the other electrons are affected. Thus, in some

regions of the molecule, ‘paired’ electrons become slightly unpaired. (This is

one of the several effects that go under the name of ‘electron correlation’). Thus

the actual spin density at the proton (Eq. 2.51) is not simply related to the

nominal unpaired-electron population on the adjacent carbon atom. Factor Q in

Eq. 9.6 brings in this effect, which we now discuss.

Consider a C22H fragment of a conjugated system. If spin a is assigned to the one

electron in the 2pz orbital on the carbon atom, there are two possibilities for assign-

ing the spins in the C22H s bond; these are shown in Fig. 9.4. Here it is assumed that

the carbon atom has its 2pz orbital perpendicular to the C22H bond; the 2px and 2py

orbitals plus the 2s orbital of the carbon atom form trigonal sp2 hybrids. The hydro-

gen atom bonds to one of these three coplanar hybrids.

If there were no electron in the 2pz orbital, the electron configurations (a) and (b)

of Fig. 9.4 would be equally probable; hence the spin density at the proton would be

zero. However, when a 2pz electron is present, say, with spin a, configurations (a)

and (b) are no longer equally probable. This effect is often called spin polarization.

It has been demonstrated from atomic spectroscopy that when two different, but

equivalent, orbitals on the same atom are singly occupied by electrons, the more

stable arrangement is the one with the electron spin components MS equal (one of

Hund’s rules). Thus configuration (a), in which the two electrons shown on the

FIGURE 9.4 Possible electron-spin configurations in the s-orbital bonding the carbon

atom to the hydrogen atom in a C22H fragment, for a spin in the 2pz orbital of that carbon:

(a) spins parallel in the s bonding orbital and the 2pz orbital of carbon; (b) Corresponding

spins antiparallel.
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carbon atom have parallel spins, is more stable and hence more probable than (b), for

which the spins are antiparallel; that is, as a consequence of the positive spin density

at the carbon nucleus, there is a net negative electron-spin density (i.e., excess of b

spin over a spin) at the proton. Conversely, if the spin state of the electron in the

carbon pz orbital is b, then a spin predominates at the proton. Detailed treatment

of the effect demonstrates that Eq. 9.6 is close to quantitative [2,6–9], with Q nega-

tive. Of course, in a conjugated radical the unpaired-electron population ri at a given

carbon atom is less than unity. Note that for the ensemble of molecules, spin states b

MS ¼
1
2

� �
are the more populated (Fig. 1.2).

The concepts discussed above can be expressed elegantly and quantitatively in

terms of a suitable mathematical formalism. We saw (Eq. 2.51) that the sign and

magnitude of a0 can be obtained quantum-mechanically by introduction of the

spin-density operator r̂s. Here, for each nucleus,

r̂s(rs) ¼ kŜzl
�1
X

k

Ŝkz d(rk � rn) (9:9)

is the spin-density operator, where the sum is over all electrons; Ŝ ¼
P

k Ŝk is the

total electron-spin operator and kŜzl is the expectation value MS ¼
P

k MSk
ofP

k Ŝkz for the state c(r k) considered (we assume MS = 0). Clearly, c contains

both spatial and electron-spin variables. The factor d(r k 2 rn) is the famous Dirac

delta ‘function’ (Section A.7) [4,23,24], here three-dimensional, with dimension

of volume21. It has meaning only within a definite integral
Ð

V
F d dV of some

spatial function F(rk) (e.g., c�c), which it sets to zero except at the single point

rk ¼ rn. Thus the integral becomes F rk¼rn

�� when the volume V includes nucleus n.

9.2.5 Sign of the Proton Hyperfine Splitting Constant

The negative sign (Eq. 9.6) of Q implies that the hyperfine parameter ak for the

proton of a C22H fragment is negative, and that the spin density there is opposite

in sign to that in the adjacent carbon 2pz orbital.

Although this sign information can be obtained from comparison of the isotropic

and anisotropic hyperfine couplings (Section 5.2 and Problem 5.11), another

method, involving a verification of the signs by a proton magnetic resonance, is

now examined.

This procedure involves the measurement of proton magnetic resonance line-

shifts for paramagnetic molecules [25]. The NMR lines must be narrow enough rela-

tive to the magnitudes of the lineshifts to permit the measurement of the latter. Thus

these lines must not be broadened too much by the relaxation of the proton spins in

the presence of the nearby electron spin. This implies that the latter must relax rela-

tively much more rapidly. The proton NMR spectrum of the biphenyl anion at room

temperature is shown in Fig. 9.5. The chemical shifts in this spectrum are huge, com-

pared to those found for protons in diamagnetic molecules, and arise from the local

magnetic fields generated by each hyperfine interaction. Referring to Fig. 9.5, one

notes that there are two lines shifted to the high-field side of the resonance position

for diamagnetic molecules. These correspond to a negative value of ai for two sets of
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protons in the radical. This result is expected from Eq. 9.6 with a negative value of Q

and positive unpaired-electron population at the carbon atom. However, one line is

shifted downfield; it must therefore correspond to a positive ai for one set of protons.

This result is understandable in terms of the new concept, negative spin density,

introduced in the previous section. If proton hyperfine splittings are less than

�0.6 mT, it may be possible to observe paramagnetic chemical shifts DB for free

radicals in liquid solution [26,27].

The chemical shift DB is given by

DB ¼ Bi � B0 ¼ �
ggebe

2B0

4gpbnkbT
ai (9:10)

for the ith proton, where Bi is the resonance field for the shifted line and B0 is the

field corresponding to the unshifted proton resonance line [28,29]. The derivation

of Eq. 9.10 is left to the reader, as Problem 9.2. It follows from Eq. 9.10 that

there is a negative (downfield) chemical shift if ai is positive, and vice versa.

The proton NMR spectrum of the biphenyl anion at room temperature is shown in

Fig. 9.5. The chemical shifts in this spectrum are huge, compared to those found for

protons in diamagnetic molecules, and arise from the local magnetic fields generated

FIGURE 9.5 Proton NMR spectrum at 60 MHz of a 1 M solution of the biphenyl anion,

structure (X) in diglyme CH322O22(CH222CH222O22)2CH3 at room temperature. The

concentration of neutral biphenyl is negligible. The line S arises from the solvent. Various

peaks have been measured with different radiofrequency power, gain and modulation.

[After G. W. Canters, E. de Boer, Mol. Phys., 13, 495 (1967).]
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by each hyperfine interaction. Referring to Fig. 9.5, one notes that there are two lines

shifted to the high-field side of the resonance position for diamagnetic molecules.

These correspond to a negative value of ai for two sets of protons in the radical.

This result is expected from Eq. 9.6 with a negative value of Q and positive

unpaired-electron population at the carbon atom. However, one line is shifted down-

field; it must therefore correspond to a positive ai for one set of protons. This result is

understandable in terms of the new concept, negative spin density, introduced in the

previous section.

If only one proton is attached to each carbon atom of a conjugated radical and if

all p spin densities are positive, the extent (Section 3.5) of the EPR spectrum

cannot exceed the value of jQj. For most radicals, the spectral extent does not

exceed �2.7 mT (i.e., jQj). However, for some radicals [e.g., the biphenyl anion

(X) and the perinaphthenyl radical (XI)] the spectral extent is considerably in

excess of this value. An extra-large spectral extent can be understood if negative

p unpaired-electron populations occur. The normalization condition for unpaired-

electron population requires that the algebraic sum of all such populations be

unity for free radicals. If some populations are negative, then others must be cor-

respondingly more positive. Consequently, the sum of the absolute values of the

unpaired-electron populations can be greater than unity. Since the spectral extent

depends only on the absolute magnitude of the hyperfine splittings, negative spin

densities result in a (seemingly) unusually large spectral extent.

In the biphenyl anion spectrum in Fig. 9.5, the line that is shifted downfield must

be assigned to positions at which the p spin density is negative. One would not

have inferred this fact from the spectral extent. However, there are appreciable

spin densities at positions that have no attached protons. The magnitude of the

shift for the low-field line indicates that this line arises from protons having

the smallest magnitude of hyperfine splitting. From the solution EPR spectrum,

the smallest splitting arises from a set of four equivalent protons. These can

be either the protons at positions 2,6,20,60 or 3,5,30,50 (Fig. 9.5). Molecular-orbital

studies indicate that the latter assignment should be made [30].

The HMO theory is too crude to yield negative p-electron spin densities at carbon

atoms. With a generalized definition [2] of spin density, distinguishing between

spin-a and -b states, more advanced MO schemes do yield these with both signs,
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and place non-zero spin density on the protons. Thus, for the latter nuclei, one

obtains the relation

ap ¼
2m0

3
gbegpbn

jcjp
2rp

kŜzl
(9:11)

to be compared with Eqs. 2.38 and 2.51. Here the wavefunction evaluated at the site

of the proton is, of course, s-like.

One of the more advanced MO theories, which allows for negative p unpaired-

electron populations, is due to McLachlan [30,31]. This theory uses Hückel orbitals

as unperturbed functions, and brings in electron interaction and correlation. When

there are N carbon atoms in the conjugated system, the expression obtained for

the unpaired-electron population at carbon atom t is

rt ¼ jcmtj
2 þ l

XN

r¼1

prtjcmrj
2 (9:12)

Here cmt is the coefficient of atom t in the mth molecular orbital that contains the

unpaired electron. l is a dimensionless parameter that may be varied to provide a

best fit to the spectral extent. It is usually given a value between 1.0 and 1.2.

Symbol prt is the dimensionless mutual atom-atom polarizability defined by

prt ¼ �4b
Xbonding

j

Xantibonding

k

(c jrc
�

kr )(c jtckt)

Uk � Uj

(9:13)

The Hückel coefficients c are for atoms r and t in molecular orbitals j and k. Uk and

Uj are the Hückel energies of the k and j levels. The summations need not include

non-bonding levels, since their effects cancel out in the summations.

9.2.6 Methyl Proton Hyperfine Splittings
and Hyperconjugation

Examination of Fig. 9.3 reveals that splittings from some methyl protons exceed

those caused by some ring protons. Hence there must be some mechanism that

couples the methyl protons to the p system.

An effective model for the coupling mechanism is that of hyperconjugation

(defined below), which provides a direct link of the methyl hydrogen atoms with

electrons in the p system. It is well known that two fragments of a molecule may

interact if there is a compatibility in the symmetry properties (and energies) of

their wavefunctions. A single 2pz orbital or a p orbital is antisymmetric with

respect to the plane of the molecule; that is, it changes sign on reflection in the

plane. The atomic orbitals of the three hydrogen atoms may be combined to give
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a molecular orbital with the same symmetry as a p orbital. Such a combination is

c ¼ c1f1 � c2(f2 þ f3) (9:14)

This symmetry is shown schematically in Fig. 9.6. c can be considered as a

pseudo-p orbital. Hence it may be regarded as part of the p system. Because the

methyl protons form a part of the p system, the spin density at the protons has

the same sign as that on the carbon bonded to the methyl group. It is to be recalled

that the hyperfine splitting ai of a proton i is proportional (Eq. 9.11) to the square

jcj 2p of the wavefunction at the proton. On CH3 the protons have identical spin den-

sities, and hence the hyperfine splitting constants from Ha, Hb and Hc of Fig. 9.6 all

have the same sign and magnitude.

That the spin density on b protons

is opposite in sign to that on a protons

was established by observing an opposite shift of the lines from the two types of

protons in a nuclear magnetic resonance experiment [32,33].

FIGURE 9.6 Schematic representation of a three-hydrogen (3H)-atom molecular orbital of

the same symmetry as the p atomic orbital in a conjugated radical. [After C. A. Coulson,

Valence, Oxford University Press, London, U.K., 1961, p. 362.]
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9.2.7 Hyperfine Splitting from Nuclei Other than Protons

When isotropic proton hyperfine splittings were considered in Section 9.2.4, it was

necessary to consider only the interaction of the p unpaired electron with the s

electrons in one bond (i.e., the C22H bond). However, in the case of nuclei that

form part of the framework of a conjugated molecule, the interactions with

several bonds must be considered. The hyperfine splittings by 13C are considered

first, but the model should generally be applicable to other nuclei, such as 14N,
17O, 19F and 33S [34]. This model is essentially a generalization of the treatment

given for the C22H fragment. It has been observed that experimental 13C hyperfine

splittings are not simply proportional to the p unpaired-electron population on the

same carbon atom. Rather, it is also necessary to include contributions from the

populations on neighboring carbon atoms. Figure 9.7 illustrates the several inter-

actions that are present, characterized by appropriate Q parameters. The notation

used is as follows. In each Q parameter, the superscript designates the atom

giving rise to the hyperfine splitting. In symbol QC
s , the subscript indicates the

polarization of the carbon 1s electrons by the local p unpaired-electron population.

In analogous symbols, the first subscript designates the atom on which the popu-

lation is contributing to the spin polarization; the two subscripts together indicate

the bond that is being polarized.

Consider the (C0)2CH fragment shown in Fig. 9.7. By analogy with the C22H

fragment, QC
CH and QC

CC0
are expected to be positive, whereas QC

C0C
and QH

CH should

be negative. A consideration [34] of the combined contributions leads to the

FIGURE 9.7 Spin polarization contributions to the 13C and to the proton hyperfine

splittings in a (C0)2CH fragment. The numbered interactions are (1) QH
CH; (2) QC

s ; (3) QC
CH;

(4,5) QC
CC0

; (6,7) QC
C0C

.
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following relation

ai
C ¼ Qs

C þ
X3

j¼1

QC
CXj

 !
ri þ

X3

j¼1

QC
XjC

rj (9:15)

where atoms Xj are those bonded to carbon atom i(; C). Quantitative calculations

[34] of the spin-polarization constants in Eq. 9.15 yield the following

results (in mT):

QC
s ¼ �1:27, QH

CH ¼ þ1:95, QC
CC0 ¼ þ1:44 QC

C0C ¼ �1:39

Inserting these values into Eq. 9.15, for (C0)2CH, one obtains (in mT)

aC
i ¼ 3:56ri � 1:39

X
j

rj (9:16a)

where the hydrogen unpaired-electron population has been deemed negligible. Simi-

larly, for a (C0)3C fragment, one obtains

aC
i ¼ 3:05ri � 1:39

X
j

rj (9:16b)

These relations are equally applicable to neutral radicals and þ1 and 21 radical

ions. The results of such estimates are displayed in Table 9.4 for the anthracene

cation and anion [35]; the sets of experimental and calculated hyperfine splitting con-

stants agree nicely. In this case it was possible to obtain an independent estimate of

the p unpaired-electron populations from proton hyperfine splittings, with the aid of

Eq. 9.6 and the normalization condition
P

i ri ¼ 1: these are included in Table 9.4.

The agreement is very satisfactory, considering that the parameters were calculated

TABLE 9.4 Calculated and Experimental 13C Hyperfine Splitting Parameters and

Unpaired-Electron Populations in the Anthracene Cation and Anion a,b

Position i

13C Hyperfine Splitting Parameters jai
C
j (mT)

Cation Anion Calculated r Experimental c

9 þ0.848 þ0.876 þ0.842 0.220

11 20.450 20.459 20.490 20.021

1 — þ0.357 þ0.337 0.107

2 +0.037 20.025 20.033 0.054

a See structure VII in Table 9.3.
b From J. R. Bolton, G. K. Fraenkel, J. Chem. Phys., 40, 3307 (1964).
c Calculated from averaged hyperfine splitting constants (Table 9.3) using QCH

H ¼ �2:70 mT and the

normalization condition for unpaired-electron populations (Eq. 9.5).
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from such an approximate theory. Similar comparison for other radicals show that

Eq. 9.15 is widely applicable for 13C splittings in aromatic hydrocarbons.

In nitrogen heterocyclic aromatic molecules, 14N substitutes for carbon atoms;

hence one might expect that Eq. 9.15 would also apply to 14N. This is probably

correct; however, experience has shown that here the effect of p unpaired-electron

populations on neighboring atoms is small. This implies that the factor QN
C0N must be

small; certain estimates place it in the range from 20.4 to þ0.4 mT [36–40]. In

view of the small contribution from neighbors, many workers have used a simpler

equation similar to Eq. 9.6 for 14N hyperfine splittings.

Hyperfine splittings from 17O [41] and 33S [42] have also been interpreted in

terms of an equation similar to Eq. 9.15.

It might be expected that since fluorine substitutes for hydrogen in aromatic mol-

ecules, an equation such as Eq. 9.6 would also hold for fluorine hyperfine splittings;

that is, if rC is positive, one expects that aF would be negative. However, it has been

shown conclusively that fluorine hyperfine splittings are positive in such molecules

[43]. The non-bonding p electrons on the fluorine apparently participate in partial

double bonding with the conjugated system to which the fluorine atom is attached;

that is, some of the electron density in fluorine p orbitals is delocalized into the p

system of the molecule. This electron transfer results in a net p spin density on

the fluorine atom, having the same sign as that on the adjacent carbon atom. One

expects that the local contribution to aF (i.e., p unpaired-electron population on

F) predominates; this would result in a positive fluorine hyperfine splitting constant

(see Section 5.3.2.2 for some discussion of this topic).

9.2.8 One-Dimensional Chain Paramagnets

Almost all the systems considered so far have been ones where unpaired electrons are

located on isolated relatively small molecules or defects. One-dimensional chain

paramagnetic systems represent a class in which unpaired electrons are delocalized

over a system of macroscopic dimension. One example is thep system polyacetylene

(CH)n (XII), consisting of very long conjugated chains of two types: cis and trans.

In principle, these species should be diamagnetic with double bonds in fixed pos-

itions and p electrons delocalized over the chains. In practice, even in highly purified
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materials, there are defects that give rise to paramagnetism, and EPR signals are

observed [44,45]. These signals tend to be single lines near g ¼ ge; they are thus rela-

tively uninformative.

There is considerable interest, for both cis and trans materials, in the formation of

regions (‘domain walls’) at which type-1 switches to type-2 bond distribution, with

unpaired spins present. Much effort [2H and 13C doping, advanced ENDOR and

ESEEM techniques (Chapter 12)] is being brought to bear on this complex system

[45,46], especially to discern whether the domain walls are fixed or mobile (soli-

tons). Chemical doping experiments show that polyacetylenes are semiconductors

capable of being transformed into excellent electrical conductors that yield EPR

signals with dysonian lineshapes (Section 9.6) [44].

A second example of macroscopic p systems involves certain organic molecules

that are strong electron donors or acceptors, and can exhibit strong EPR signals

under appropriate conditions.

The p-phenylenediamines are strong donors. For example, the species forms

readily and is called ‘Wurster’s blue cation’ (XIII). It exhibits a complex multi-line
1H and 14N hyperfine pattern [47] in aqueous solution, and is known to dimerize to

some extent in non-aqueous solutions [48]. In the solid state (e.g., the perchlorate

salt), it crystallizes in long parallel one-dimensional chains5 and undergoes antifer-

romagnetic spin pairing at low temperatures.

Among the strong acceptors, tetracyanoethylene (XIV) and tetracyanoquino-

dimethane (XV) have been of considerable interest, since they readily form

mono-anion radicals. For instance, pairwise clustering of such species in the crystal

form leads to thermally accessible singlet and triplet species, in which the triplet

excitation (exciton) is mobile [49]. Many of these materials are semiconductors.
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As an inorganic example, we can cite chains of platinum atoms, bonded directly

to each other, but each liganded with various oxygen anions. Thus we deal with

one-dimensional (1D) chains of nascent metallic character; these materials are

called ‘platinum blues’. In one example, a paramagnetic one, there is a mixed

chain Pt(II)3Pt(III) having spin S ¼ 1
2
. EPR studies have yielded principal values

g? ¼ 2:509 and gk ¼ 1:978, and nicely resolved 195Pt (33.8% natural abundance)

hyperfine structure showing that the unpaired electron is highly delocalized along

the chain, with all four Pt atoms close to equivalent, with the parallel direction

along the mean chain direction z [50]. The Pt22Pt bonding can be described in

terms of dz2 orbital overlap, in first approximation.

In summary, EPR has played a prominent role in the study of electron spin-spin

interactions in these systems. A review [51], up to 1966, is available.

9.3 s -TYPE ORGANIC RADICALS

For the radicals considered thus far, the unpaired electron is located primarily in a

carbon 2pz (or p) orbital. Small isotropic hyperfine couplings (ja0j , 100 MHz) are

observed, but these arise primarily from the indirect mechanism described in Section

9.2.3. The nuclei are usually located at or near the nodal plane of the 2pz orbital.

There are a number of known radicals that exhibit proton hyperfine couplings with

isotropic components of the order of 150–400 MHz. These couplings are far too large

to be explained by the indirect mechanism, and one is forced to conclude that the wave-

function of the unpaired electron has considerable density at the nucleus considered.

Thus, the unpaired electron is located primarily in the s orbital that would normally

form a s bond between that nucleus and some atom (such as hydrogen) absent in

the radical. Most s orbitals have a considerable s-orbital component.

In the ethynyl radical C;;C22H, the unpaired electron occupies primarily an

orbital pointing outward, that is, one that would be directed toward a second

proton in the acetylene molecule. Likewise in the vinyl radical HC55CH2, the

unpaired electron is primarily in an orbital that would attach a hydrogen atom to

form the ethylene molecule. Yet another example is the formyl radical HCO,

derived from formaldehyde H2CO, in which the bond angle is thought to be 1208
[52]. A closely related radical is FCO.

In each of these cases, the sign of the 1H (or 19F) hyperfine coupling constant is

believed to be positive, arising from a considerable s component at the hydrogen (or

fluorine) atom. For instance, in the HCO radical, the unpaired-electron population in

the 1s orbital of hydrogen is approximately 0.27, since the proton hyperfine coupling

constant is 0.27 � 1420 ¼ 384 MHz [53]. This is an unusually large proton coup-

ling. In terms of resonance structures, it can be assumed to imply considerable pre-

sence of Hþ CO in the ground state.

The magnitude of isotropic 13C hyperfine splittings provides a direct indication of

whether there is a significant s-orbital contribution on carbon. A pure s orbital would

yield a 13C hyperfine splitting of �135 mT (Table H.4). An sp3 hybrid for a tetra-

hedral configuration would give 25% of this value. For example, in the p radical
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CH3, the aC hyperfine splitting constant is only 3.85 mT [54], showing this radical to

be close to planar. In the CF3 radical, aC ¼ 27.1 mT [54]. This large increase in the
13C hyperfine splitting can be explained in terms of a large pyramidal distortion in

CF3. Thus the latter is a s radical.

It is interesting to compare the isotropic parts of the proton couplings in the

formyl (HC55O) and the vinyl radicals. For the latter in a rigid medium, the

couplings (in mT) are 1.57 for H(1), 3.43 for H(2) (cis), and 6.85 for H(3) (trans)

[55]. (Problem 10.7 explores the apparent changes in couplings when this radical

is observed in liquid solution.) Even the largest value is considerably less than

that (13.7 mT) for HCO, which likely has a bond angle of �1258. The difference

arises from the large variation of coupling constant with bond angle. From the

value for H(1) in the vinyl radical, the HCC bond angle is estimated to be 140–1508.
Hyperfine couplings in s-type radicals may also exhibit large anisotropy. For

example, in FCO, the principal hyperfine matrix components A(19F)/h are 1437.5,

708.2 and 662.0 MHz [55]. Presumably a large spin polarization of the CF bond

occurs, arising from configuration interaction between the ground state and a low-

lying excited state describable in terms of atomic F and CO.

It is possible to estimate the spin distribution in s radicals by using a molecular-

orbital theory, such as the INDO method [2] (which includes all valence-shell

atomic orbitals).

9.4 TRIPLET STATES AND BIRADICALS

The triplet state of naphthalene, too, can be discussed in terms of the HMO model.

Thus one unpaired electron is in the highest bonding orbital, whereas the other was

transferred (Section 6.3.4) from there to the lowest antibonding orbital. In accord-

ance with the pairing theorem, the orbital coefficients of these are equal in magni-

tude. The unpaired-electron populations obtained experimentally and from various

theoretical approaches are listed in Table 9.5. The p-electron populations

(Problem 9A.3) sum to 1 (and not 2), consistent with the operation of the Pauli

exclusion principle [1, Section 8.5]. These parameters yield a good approximation

to the set of proton hyperfine couplings (Section 9.3.4),6 which are seen to be

much the same as those of the naphthalene anion (Section 3.2.2) and cation

(Table 9.3), despite the presence here of two unpaired electrons.

It is of interest to calculate the value of D when the two coupled electrons are on

the same carbon atom, namely, for CH2. This hydrocarbon is one of the smallest

molecular species with a low-lying triplet state, that is, its 3B1 ground state. It is

thus a favorite molecule for theoretical calculations (see Ref. 56 for a summary

and also Section 6.3.6.1). Experiment and ab initio calculations agree that CH2 is

non-linear. For a bond angle of 1358, the latter yield D̄ ¼ 0.81 cm21,

Ē ¼ 0.05 cm21 [57]. EPR spectroscopy yields D̄ ¼ 0.76(2) cm21, when a correction

for motional effects is made [58]. In these small molecules, one must be concerned

about a possible contribution to D from spin-orbit coupling. In O2, this contribution
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is appreciable. However, calculations for CH2 disclose that the spin-orbit contri-

bution to D and E is small as compared to the spin-spin interaction [57].7

The large value of D in H22C22C;;N, notwithstanding the possibility of deloca-

lization in the C;;N group, is probably due to the existence of a negative unpaired-

electron population on the central atom of the C22C;;N group. Thisp system is akin

to that of the allyl radical H2C(CH)CH2 (Problem 9.4 and Appendix 9A). The

expected negative populations on the central atom would thus lead to an increased

positive population on each outer carbon atom and hence to an increased value of

D. Such an effect cannot occur with the H22C22CF3 molecule listed in Table 6.1.

The effect is probably operative in the molecule H22C22C;;C22H also, and assu-

redly also in N;;C22C22C;;N, where there are five p-electron centers.

Table 6.1 includes the parameters for one nitrene. These species, N22R, are isoelec-

tronic with the carbenes. The parent compound for the nitrenes is N22H. It has been esti-

mated that �D ¼ 1.86 cm21 for this fragment [59]. For N22C;;N, the reduction in the D

value by delocalization is probably somewhat offset by the enhancement of the positive

population on the nitrogen atoms, due to a negative spin density on the carbon.

9.5 INORGANIC RADICALS

The assignment and interpretation of the EPR spectra of inorganic radicals have been

a very active field of investigation. It is not possible to give a complete coverage;

however, we shall attempt to outline the major features with some examples.

TABLE 9.5 Unpaired-Electron Populations for Naphthalene in Its

Lowest Triplet State a, b

Source of Data

Spin Population c

r1 r2 r9 r1/r2

From the anisotropic part of the proton hyperfine splitting 0.219 0.062 –0.063 3.5

From the isotropic part of the proton hyperfine splitting d 0.220 — — —

From HMO calculations (Problem 9A.3) 0.181 0.069 0 2.6

From advanced MO calculations:

Amos e 0.235 0.048 –0.066 4.89

Pariser f 0.168 0.074 0.015 2.27

Goodman and Hoyland g 0.198 0.052 0 3.81

Atherton and Weissman h 0.220 0.083 –0.106 2.65

a See structure VI in Table 9.3.
b N. Hirota, C. A. Hutchison Jr., P. Palmer, J. Chem. Phys., 40, 3717 (1964).
c For position labeling, see structure VI.
d Using QCH

H /h ¼ 266.50 � 106 s21.
e A. T. Amos, Mol. Phys., 5, 91 (1962).
f R. Pariser, J. Chem. Phys., 24, 250 (1962).
g L. Goodman, J. R. Hoyland, J. Chem. Phys., 39, 1068 (1963).
h N. M. Atherton, S. I. Weissman, J. Am. Chem. Soc., 83, 1330 (1961).
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Identification of Radical Species. As in the case of organic radicals, the values of

principal components of hyperfine matrices can provide the major clues in the identi-

fication of species resulting from the irradiation of inorganic materials. For example,

x irradiation of LiF at 77 K produces (among others) a species that exhibits a 1 2 1

triplet EPR spectrum for B k [100]. Such a pattern implies hyperfine interaction

with two nuclei of spin 1
2
. The principal values of the g matrix are gX ¼ 2.0234,

gY ¼ 2.0227 and gZ ¼ 2.0031, indicative of nearly uniaxial symmetry.

The hyperfine splitting shows uniaxial behavior, with ak ¼ 88.7 mT and

a? ¼ 5.9 mT [60]. The species responsible is undoubtedly the F 2
2 ion (VK center). If

the experiment is done with KCl, the spectra (Fig. 9.8) from the molecular ions

(35Cl2235Cl)2, (35Cl2237Cl)2 and (37Cl2237Cl)2 provide redundant and incontroverti-

ble (and redundant) identification that the center here is Cl2
2. Interpretation of Fig. 9.8 is

left as a problem for the reader.

In other cases the appearance of hyperfine structures is not sufficient to provide a

positive identification. For example, g-irradiated KNO3 exhibits the EPR spectrum

shown in Fig. 9.9. There are at least three radical species, each of which contains a

nitrogen atom, as evidenced by the triplet hyperfine splittings. However, the assign-

ment to specific radicals requires further information. The reasonable possibilities

can be listed as NO2, NO2
22, NO3, and NO3

22. The experimental results for the

hyperfine and g matrix principal values are listed in Table 9.6.

The identification requires a knowledge of the theoretical predictions of the struc-

ture and orbital sequence in each radical; in addition, one requires information from

FIGURE 9.8 EPR spectrum of the Vk center (Cl2
2) in x-irradiated KCl at 77 K with the

magnetic field parallel to the [100] direction in the (100) plane, with v ¼ 9.263 GHz.

[After T. G. Castner, Jr. W. Känzig, J. Phys. Chem. Solids, 3, 178 (1957).]
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studies of these radicals in other host matrices. In various hosts, NO2 exhibits a 14N

hyperfine coupling with little anisotropy and an isotropic hyperfine coupling of

about 150 MHz [61]. The small anisotropy arises from the fact that NO2 is

usually rotating about its two-fold axis, even in a solid. Fixed NO2 exhibits

FIGURE 9.9 Spectra of radicals obtained on g irradiation of KNO3. Species 1 (lines a, b

and g) has been assigned as the NO2 radical. Species 2 (lines a, b and c) has been assigned as

the NO3
22 radical. [After R. Livingston, H. Zeldes, J. Chem. Phys., 41, 4011 (1964).]

TABLE 9.6 Hyperfine and g Matrices for Radical Species Found

in g-Irradiated KNO3

Species g Components

14N Hyperfine

Components (MHz)

1 gk ¼ 2.006a Ak/h ¼ 176a

g? ¼ 1.996 A?/h ¼ 139

2 gk ¼ 2.0031b Ak/h ¼ 12.08b

g? ¼ 2.0232 A?/h ¼ 9.80

3 gk ¼ 2.0015a Ak/h ¼ 177.6a

g? ¼ 2.0057 A?/h ¼ 89.0

a H. Zeldes, “Paramagnetic Species in Irradiated KNO3”, in Paramagnetic Resonance,

Vol. 2, W. Low, Ed., Academic Press, New York, NY, U.S.A., 1963, p. 764.
b R. Livingston, H. Zeldes, J. Chem. Phys., 41, 4011 (1964).
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considerable anisotropy. The large hyperfine coupling arises from the fact that the

unpaired electron is located primarily in a non-bonding orbital on nitrogen. The g

matrix is virtually isotropic, with giso � 2.000. Comparison with Table 9.6 indicates

that species 1 is probably the NO2 radical.

In NO3 (the symmetric isomer; D3h) the unpaired electron is located in an orbital

composed largely of non-bonding oxygen p orbitals lying in the plane of the

molecule. Thus the nitrogen hyperfine coupling is expected to be very small. Exam-

ination of the results in Table 9.6 suggests that species 2 may be this NO3 radical.

Species 3 exhibits considerable isotropic and anisotropic hyperfine interaction.

NO3
22 is a reasonable possibility, since this ion is expected to be not quite planar

[62], that is, a slightly distorted p-type radical. The distortion would introduce

some s character into the orbital of the unpaired electron and thus account for the

large isotropic hyperfine coupling (�120 MHz).

Structural Information. When a radical species has been identified, the g and

hyperfine matrices can provide considerable information about the detailed geo-

metric and electronic structure of the radical. The NO2 radical (observed in

NaNO2 [63]) is an excellent example. From Table H.4 one notes that a single elec-

tron in a 2s orbital on a free nitrogen atom would give rise to an isotropic hyperfine

coupling of 1540 MHz. From the observed value of A0/h ¼ 151 MHz, the

unpaired-electron population in the nitrogen 2s orbital is computed to be

rs ¼
151

1540
¼ 0:10. Similarly, from the maximum value in the anisotropic hyperfine

matrix, the population in the nitrogen 2px orbital is computed to be

rp ¼
12
48
¼ 0:25. Hence the 2p/2s ratio is 2.5. A simple consideration of orbital

hybridization suggests that the bond angle is between 1308 and 1408. This is in

good agreement with gas-phase vibrational analysis [64] and microwave results

(1348) [65]. Presumably, the unpaired-electron populations for the nitrogen 2p

and 2s orbitals do not add up to unity because there is some population in 2p orbi-

tals on the oxygen atoms.

When isotropic hyperfine couplings are small, as for species B in Table 9.6, one

must beware of interpreting these in terms of a percentage of s character in the

orbital of the unpaired electron. The indirect mechanism leading to isotropic hyper-

fine coupling (Section 9.2.3) may give the major contribution. Generally, if

jrsj , 0.05 as computed above, then an interpretation in terms of a bond angle is

dubious.

It is interesting to compare the EPR results for isoelectronic series of radicals.

Table 9.7 contains the data for the ClO3, SO3
2, and PO3

22 radicals, as well as for

the NO2 and CO2
2 radicals. It is clear that as the atomic number of the central

atom decreases, the tetratomic radicals become more pyramidal (as evidenced by

the decreased ratio rp/rs); the triatomic radicals become more bent.

As a final example of inorganic radicals, we cite the EPR of adsorbed oxygenic

species [66]. The S ¼ 1
2

ions O2, O2
2 and O3

2 on the surfaces of various materials all

show characteristic spectra, corroborated with the help of 17O enrichment, and

undergo chemical interconversions of catalytic interest.
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9.6 ELECTRICALLY CONDUCTING SYSTEMS

Electrically conducting systems represent another example (see Section 9.2.8) of inter-

acting electrons; in this case the cooperativity extends over the entire macroscopic

sample. We consider metals, metal ammonia and amine solutions, semiconductor, and

graphitic materials. The analysis of EPR lineshapes and linewidths can in principle yield

information about the electrical conductivity, conduction-electron g factor and spin

relaxation time, the electron state density on the Fermi energy surface and carrier diffu-

sion parameters. Frequently, especially in solids, mobile electrons are called ‘itinerant’.

9.6.1 Metals

Metals may be visualized as a matrix of fixed cations in a sea of highly delocalized

(conduction) electrons; as they are highly mobile, they are able to interact with each

FIGURE 9.10 (a) First derivative of the ideal dysonian absorption line in the X-band region;

(b) typical first-derivative EPR spectrum observed in colloidal samples of Na(s), with mean

particle diameter small compared to the skin depth. Horizontal scale is not the same as in (a).

[After F. Vescial, N. S. VanderVen, R. T. Schumacher, Phys. Rev., 134, A1286 (1964).]
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other. EPR signals are observed [67]; however, only the layers near the surface con-

tribute, since the excitation field B1 penetrates only a short distance (�1 mm) into

the metal (skin effect).

The magnetic susceptibility in metals has a diamagnetic component due to the

circulation of electrons in the field B. This is opposed by the normal paramagnetic

component due to the unpaired electrons. The g factors of the observed EPR spectra

are close to ge. For example, in sodium metal, g 2 ge ¼ 9.7(3) � 1024 in both

the liquid and solid phases [68]. The EPR lineshape typically is asymmetric

(Fig. 9.10), arising from a mixture of absorption and dispersion effects. This admix-

ture arises because the electron diffusion relative to the surface occurs in times that

typically are long compared to the spin-relaxation times, as explained by Dyson and

others [69,70].

It has been possible to study S-state ions in metals [71], and thus to learn details of

the interaction between the conduction electrons and the inserted spin probes (gado-

linium ions). The observed g shifts (2.01 – 1.88) correlate nicely with certain prop-

erties of the pure alloys used as solvents.

9.6.2 Metals Dissolved in Ammonia and Amine Solutions

When alkali or alkaline-earth metals (M) are dissolved in liquid ammonia or amines,

ionization takes place to produce metal cations and solvated electrons. The latter

(blue color when dilute in liquid NH3) exhibit very sharp EPR lines (width

0.002 mT!) with g ¼ 2.0012(2), independent of concentration (,1 M) and of

cation Mþ [72–74].

In concentrated solutions (bronze in color), the electronic conductivity becomes

metallic, rather than electrolytic, and the EPR line broadens, becoming dysonian in

shape [74]. Furthermore, solid cubic complexes M(NH3)x can be isolated [e.g.,

Li(NH3)4 [75]] that exhibit EPR lines with dysonian shapes characteristic of

normal metallic behavior [76].

Dilute solutions of metals in amines exhibit EPR spectra with resolved 14N hyper-

fine splittings, which give some insight into the structure and dynamics of the inter-

action of the electron with the surrounding solvent molecules [77].

With crown ethers, such as 18C6 (XVI) (inert ligands capable of encapsulating

alkali cations), it is possible to isolate stable electrides [e.g., Csþ(18C6)2e2] containing
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close to a unity stoichiometric ratio of electron anions to metal cations. The crystals

exhibit a single dysonian line at g � ge (linewidth 0.05 mT) down to 3 K [77,78]. The

temperature dependence of the electrical conductivity suggests that the material is a

semiconductor with a band-gap energy of 0.9(1) eV.

9.6.3 Semiconductors

Semiconductors, like insulators, have virtually continuous electronic energy bands,

derived from orbitals based on all atoms in the crystal. The highest occupied band

(valence band) is virtually filled with electrons and is separated from the next vir-

tually unoccupied band (conduction band) by an energy gap (band-gap) that has

few or no energy levels. In insulators the band gap is very large (.4 eV), so that

thermal excitation of electrons from the valence band to the conduction band is

rare. In semiconductors the band gap is smaller (1–3 eV), so that electron (and

hole) conductivity, arising from promotion of electrons between these two bands,

is possible at moderate temperatures. This conductivity may be enhanced greatly

by doping with appropriate donors (n-type) or acceptors (p-type), which leads to for-

mation of paramagnetic species.8

EPR has proved to be an important tool in the study of semiconductors, particu-

larly in identifying and elucidating the structure of point defects and impurity ions.

For example, the tetrahedral structure of solid Si can be damaged by electron

irradiation, generating defects (Vþ, V0 and V2) at which electrons are trapped

next to Si atoms with ‘dangling’ bonds [81–83]. The neutral vacancy (V 0) has

four interacting dangling bonds that interact to produce spin pairing and thus is dia-

magnetic. The V2 and Vþ species have S ¼ 1
2

and exhibit EPR spectra, often with

resolvable 29Si hyperfine splittings.

Center Vþ exhibits an EPR spectrum featuring three equally intense prominent

peaks, each flanked by weaker 29Si hyperfine doublets [74,84]. On applying uniaxial

stress to the crystal, one can alter the relative intensities of the three peaks

(Fig. 9.11). The explanation for the triplet is that any one of three energy-equivalent

distortions occurs at each vacancy site, differing in the location of the one-electron

bond and the two-electron bond formed between the four tetrahedral silicon neigh-

bors. External stress redistributes these bond configurations among each other.

The mixed semiconductors (III–V or II–VI) have also been widely studied by

EPR/ENDOR. The anion anti-site center in p-type GaP [85] is an example of a

center in which a group-V atom occupies a group-III atom site, forming a “double

donor”. For example, the center P4þ(P32)4 exhibits an EPR spectrum (Fig. 9.12)

with g ¼ 2.007(3), consisting of an isotropic hyperfine doublet (a0 ¼ 103 mT)

arising from the central P ion; each of these lines is split into an (anisotropic)

1 : 4 : 6 : 4 : 1 quintet (�9 mT) from interaction with the four tetrahedrally disposed

P neighbors [85]. A superior technique for investigating such defects, and others in

semiconductors, features optical detection of EPR and ENDOR (Chapter 12).

For example, a 1992 study [86] reports detection of the microwave-modulated

luminescence (at 0.8 eV) from the first-neighbor 31P shell of the phosphorus antisite
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in zinc-doped InP, yielding jAkj/h ¼ 368.0(5) and jA?j/h ¼ 247.8(5) MHz for each

of the four nuclei.

Numerous other magnetic defects—for example, clusters of vacancies, interstitials,

and transition ions—also occur in semiconductors, but these cannot be discussed here.

FIGURE 9.11 Changes in the 20-GHz EPR spectrum of the silicon vacancy center Vþ (at

4 K) under compressional stress. The insets sketch the defect bonding pattern corresponding

to each line. Here B k [100]. The stress was applied along [100]. [After G. D. Watkins, J. Phys.

Soc. Jpn., 18, Suppl. 2, 22 (1963).]

FIGURE 9.12 EPR spectrum of the 31P4þ ion in the PGa
þ anti-site center [P4þ(P32)4] in the

II–V semiconductor GaP (34.8 GHz, B k [100], 20 K). [After U. Kaufmann, J. Schneider,

Festkörperprobleme, 20, 87 (1980).]
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Clusters of molecules also show semiconductor properties. An interesting

example is lithium phthalocyanine (LiPc) (XVII), in which the p-radical rings

stack linearly with the Li atoms superimposed. The EPR spectrum of the solid con-

sists of an exchange-narrowed sharp line (DBpp � 0.005 mT) at g ¼ 2.0015 [87,88].

This broadens dramatically as a result of exchange interactions when O2 (Section

10.5.3.1), diffusing rapidly through the channels in the crystal, is admitted (and

does so reversibly). The substance is chemically stable and offers a sensitive and

rapid means of measuring O2 concentrations in solutions by means of EPR.

9.6.4 Graphitic Compounds

Graphitic intercalation compounds are distinct in that they are highly anisotropic. A

comprehensive review of the status of the conduction EPR field of these conducting

‘metallic’ materials became available in 1997 [89].

9.7 TECHNIQUES FOR STRUCTURAL ESTIMATES
FROM EPR DATA

Despite the ultimate need for complex large-scale numerical modeling, various more

or less empirical but relatively simple techniques have been developed to attain

structural information from the electron-spin electron-spin interaction parameters

(D, J, set of B4
m discussed in Section 9.7.2).

9.7.1 The Newman Superposition Model

This empirical technique [90–92], applied mostly to transition ions embedded in a

symmetric crystal structure (e.g., in a mineral), can describe the electronic quadru-

pole matrix D in terms of additive uniaxial crystal-field contributions from the

nearest-neighbor ions. It can give information about the coordination number,

ligands and local symmetry, and has most often been applied to S-state ions

(Mn2þ, Fe3þ and Gd3þ) in oxides and halides.
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The Newman model postulates that

D ¼
1

2
D0

X
i

(3 cos2 ui � 1)
RD

Ri

� 	tD

(9:17)

for metal ion M and ligand type X. The sum is over the nearest-neighbor ligands (all

of the same type), polar angle ui gives the direction between ligand Xi and axis z of a

cartesian set fixed at M, and the distance between M and Xi is Ri. Parameters

D0(M, X, R0), RD and tD are evaluated empirically; typically, the reference distance

is 0.19 � RD � 0.21 nm and tD ¼ 8 + 1.9 For parameter E, an equation differing

from Eq. 9.17 only in the form of the angular factor is appropriate.

For systems MnX6
42 with X ¼ Cl, Br and I, studies reveal that parameter D0

increases monotonically with increasing covalence of the Mn22X bonds [94]. Its

complex behavior depends, for instance, on local distortions.

As a second example, we cite the good success of the Newman model in the

interpretation of the S2 and S4 parameters for Fe3þ in a cation site of Li2O, where

two neighbor sites appear to be Liþ vacancies [95]. However, the model is none

too successful in some same cases [96].

9.7.2 The Pseudo-cube Method

The fourth-order terms, that is, measured coefficients of spin-hamiltonian terms

quartic in the components of (Section 6.6 and Eqs. 8.17), are even more sensitive

than those (i.e., D) quadratic in Ŝ. They are found to be useful, despite the fact

that they are seldom available with the same accuracy as D, in learning about the

location of S-state ions and their local environment.

The method of analysis, developed by Michoulier and Gaite [97,98], depends on

transforming the fourth-order measured parameters to various rotated coordinate

frames (other than the lab crystal frame) until one is found exhibiting the highest

local symmetry around the paramagnetic ion being investigated. Various criteria

for this have been developed. For example, the sites of Fe3þ ions in KTiOPO4

can be identified uniquely as being type Ti(1) rather than Ti(2), by means of the

pseudo-cube method [99].

9.7.3 Distances from Parameter D

In triplet-state systems, some rough estimates of interelectron distances are available

from the principal values of D, that is, from D and E that depend on the mean dis-

tance (i.e., on r23) between the two electrons with parallel spins. In particular, from

Eqs. 6.15 and 6.25, one has (see also Eq. 6.41)

D ¼
3m0

16p
(gbe)2k r2 � 3Z2

r5
l (9:18a)

E ¼
3m0

16p
(gbe)2k Y2 � X2

r5
l (9:18b)
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where X, Y, Z are the components of the interelectron vector expressed in the

principal-axis system. Thus experimental values (e.g., obtained from Eqs. 6.32)

can provide information about the spatial disposition of the two electrons, if the

averages over the electron positions in Eqs. 9.18 can be modeled. This analysis is

valid only if the interaction is predominantly dipolar in nature, that is, if there is

no significant contribution from spin-orbit coupling to D.

9.7.4 Eatons’ Interspin-Distance Formula

It has proved possible to extract mean distances r between spin-1
2

centers via the

simple formula

A(DMS ¼+2)

A(DMS ¼+1)
¼ krr

�6 (9:19)

where the left side contains the ratio of the integrated areas (under the absorption

curve) for the two types of transitions possible (Section 6.3), corrected for any

hyperfine effects present. The proportionality factor kr is obtainable by a suitable

procedure [100,101]. The recommended value is kr ¼ 1.95 � 1023 nm6. This

method is valid when the dipole-dipole interaction dominates over anisotropic

exchange, typically for r . 0.4 nm ¼ 4 Å. The method has been applied, for

example, to obtain r for an interacting Cu2þ (3d9)—nitroxyl spin-labeled

species [100].

9.7.5 Summary

EPR is rapidly becoming an excellent tool for discerning atom positions, as well as

bond lengths and directions, in paramagnetic species. Because of its sensitivity, this

technique can furnish such information where non-spectroscopic methods (e.g.,

x-ray diffraction) fail. A recent journal issue is devoted to this topic [102].
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NOTES

1. There is confusion in the literature as to the usage of terms such as ‘spin density’ and ‘spin

population’. We prefer to use ‘density’ in the sense that dimensions of volume21 are

implied. Thus electron probability density has the units m23, and charge density has

units C m23, and spin density has units m23. The term “spin population” is not

recommended, since it can also suggest the Boltzmann distribution among the spin

states. Rather, ‘unpaired-electron population’ is used herein to denote the unit-less

quantity equaling the square of (unitless) wavefunction coefficients, or algebraic sums

thereof (which can be negative).

2. We deal in this chapter with isotropic hyperfine splitting constants. For convenience, we

drop the subscript 0 that indicates this.

3. Reference 2 applies and discusses the unrestricted self-consistent-field molecular-orbital

scheme, based on the Hartree-Fock-Roothaan equations, which resorts to intermediate

neglect of differential overlap (INDO).

4. However, various other effects enter. The Jahn-Teller distortion (Section 8.2), including

vibronic coupling, and the nearby cation (e.g., Kþ) affect the degeneracy.

5. See the series of papers by J. Kommandeur and co-workers, J. Chem. Phys., 47, 391–413

(1967).

6. Using relations such as Eq. 9.6 for adjacent as well as more distant carbon atoms.

7. In Chapter 4 we deal with the opposite extreme: the case in which the zero-field splittings

arise entirely from spin-orbit coupling.

8. The silicon metal-oxide-semiconductor field-effect transistor (MOSFET) is a dominant

device in the electronics industry. The whole unit can be mounted in a magnet, and the

recombination of electrons and holes can be observed by monitoring its electrical

characteristics: electrically detected magnetic resonance (EDMR) [79,80].

9. A higher value, td ¼ 16, has more recently been recommended [93].

10. It is unusual to have two different hyperfine splittings for two hydrogen atoms bonded to

the same carbon atom. This implies that Q is not the same for the two hydrogen atoms. An

explanation for this effect has been proposed [104].

FURTHER READING

Relations Between Hyperfine Splittings and Spin Densities

N. M. Atherton, Principles of Electron Spin Resonance, Prentice-Hall, New York, NY,

U.S.A., 1993. (Chapter 3 contains a quite detailed discussion of the relationship between

spin density and unpaired-electron population.)

E. T. Kaiser, L. Kevan, Eds., Radical Ions, Wiley-Interscience, New York, NY, U.S.A., 1968.

(Chapters 1, 4, 5 and 6 deal with spin densities, radical cations, orbital degeneracy in substi-

tuted benzenes, and anion radicals.)

J. D. Memory, Quantum Theory of Magnetic Resonance Parameters, McGraw-Hill,

New York, NY, U.S.A., 1968, Chapters 7 and 8. Relations between hyperfine splittings and

spin densities are treated in terms of valence-bond and molecular-orbital theories.
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Organic Radicals

F. Gerson, W. Huber, Electron Spin Resonance of Organic Radicals, Wiley-VCH, Weinheim,

Germany, 2003. (Chapter 3 covers spin densities and unpaired-electron populations.)

E. T. Kaiser, L. Kevan, Eds., Radical Ions, Wiley-Interscience, New York, NY, U.S.A., 1968.

Inorganic Radicals

P. W. Atkins, M. C. R. Symons, The Structure of Inorganic Radicals, Elsevier, Amsterdam,

Netherlands, 1967.

J. R. Morton, “Electron Spin Resonance Spectra of Oriented Radicals”, Chem. Rev., 64, 453

(1964).

PROBLEMS

9.1 The proton hyperfine splittings for the naphthalene anion are 0.495 and

0.187 mT (Section 3.2.2). Based on the molecular orbitals of naphthalene

(Problem 9A.3), how should these hyperfine splittings be assigned? How

does the ratio of hyperfine splittings compare with the ratio of the squares of

the atomic-orbital coefficients for the molecular orbital containing the odd

electron?

9.2 Given that the proton NMR transition energies in a free radical containing a

proton with hyperfine splitting ai are

hn ¼ jgpbnBi � gebeaiMSj (9:20)

where Bi is the NMR resonance field, derive Eq. 9.10 assuming that the energy-

level populations are given by the Boltzmann distribution.

9.3 Proton NMR spectra of ethylbenzene at 56.4 MHz are shown in Fig. 9.13a

without and in Fig. 9.13b with the corresponding monoanion as solute. From

the shifts seen in the latter, confirm that the hyperfine splittings for the CH2

and the para protons of the group are þ0.080 and 20.087 mT, respectively.

In this system, electron transfer is so rapid that all ethylbenzene molecules par-

ticipate; the shifts are proportional to the mole fraction of the reduced form.

9.4 Calculate the unpaired-electron populations in the allyl radical, H2CCHCH2,

from the Hückel molecular orbitals and energies given in Fig. 9A.1, taking

l ¼ 1.1. Compare the results with the populations derived from the exper-

imental hyperfine splittings [103] given below, taking Q ¼ 22.70 mT.

Assume that the smaller hyperfine splitting is positive, corresponding to a

negative unpaired-electron population on the middle carbon atom. The

two primary resonance structures of the allyl radical, with hyperfine
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splittings, are10

9.5 The proton hyperfine splittings for the 1,3-butadiene anion are 20.762 and

20.279 mT.

(a) What is the average value of Q?

(b) Explain why jQj is so low. (Usually Q ranges from 22.5 to 23.0 mT.)

FIGURE 9.13 Proton magnetic resonance spectra at 56.4 MHz of (a) 1.93 M ethylbenzene,

and (b) 1.93 M ethylbenzene plus 4.5 � 1022 M ethylbenzene anion. The solvent is liquid

d8-tetrahydrofuran at 2758C. Peaks marked S are due to an impurity. [After E. de Boer,

J. P. Colpa, J. Phys. Chem., 71, 21 (1967).]
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9.6 The 1H and 13C hyperfine splittings (including the signs) have been measured

[105] for the radical

a1
H ¼ �0:6270 mT a2

H ¼ 0:1833 mT a1
C ¼ 0:979 mT

a2
C ¼ �0:792 mT a10

C ¼ �0:792 mT a13
C ¼ 0:332 mT

The wavefunction for the non-bonded orbital is as follows:

cNB ¼
1ffiffiffi
6
p (f1 � f3 þ f4 � f6 þ f7 � f9)

(a) Assume QCH
H ¼ 22.7 mT, and calculate r1 and r2.

(b) r10 and r13 have been computed from theory and are given as

r10 ¼ 20.054 and r13 ¼ þ0.044. Use this spin distribution to calculate

the 13C splitting constants. (Remember that positions 10 and 13 have

three carbon atoms bonded to the central carbon, whereas positions 1

and 2 have two carbons and a proton.) How do these compare with the

experimental 13C splittings?

9.7 The statement has been made that the value of Q determines the total extent

(Section 9.2.5) of the p-radical EPR spectrum. For the benzene anion the spec-

tral extent is �2.25 mT, for CH3 �6.9 mT, and for perinaphthenyl, �4.3 mT.

Comment on the magnitudes of these values.

9.8 Interpret the spectrum shown in Fig. 9.8, which arises from the Cl 2
2 ion

in KCl.

APPENDIX 9A HÜCKEL MOLECULAR-ORBITAL
CALCULATIONS

A brief summary of the HMO approach to the calculation of orbital energies and

unpaired-electron distributions in p-electron systems is given here. Because of the

crude assumption of non-interaction among the electrons, we can treat all anions,

neutral molecules, and cations using the same theory. Thus the s system of H2
þ,
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H2 and H2
2 can serve as one basic example; these calculations yield equations

equally applicable to the p-electron states of the molecules C2H4
þ, C2H4 and

C2H4
2. This approach has been widely described in textbooks and in intermediate-

level chemistry courses. Hence here we shall only map out successive steps and

summarize intermediate and working-level expressions. Detailed molecular-orbital

calculation procedures and tabulations of the results for many molecules are given in

the references at the end of this appendix.

1. Define the molecular orbitals to be linear combinations

jcil ¼ ci1jf1lþ ci2jf2lþ � � � þ cinjfnl (9A:1)

of n normalized atomic orbitals. The total energy expectation value for the ith

molecular orbital (i ¼ 1, . . . , n) is given by kcijĤjcil. We shall not need to

establish the form of the hamiltonian Ĥ explicitly. For the present we set

n ¼ 2; that is, we consider systems such as H2 or the C2H4 p system for

which one has two molecular orbitals

jc1l ¼ c11jf1lþ c12jf2l (9A:2a)

jc1l ¼ c21jf1lþ c22jf2l (9A:2b)

of interest. It is useful to define two parameters

Hi, j ; kfijĤjf jl ¼ H ji (9A:3a)

Si, j ; kfijf jl ¼ S ji (9A:3b)

in terms of the atomic orbitals (i, j ¼ 1, 2, . . . , n).

2. Determine the ratio of the coefficients ci in each state (we suppress the first

index here) by setting the derivatives @U=@c1 and @U=@c2 equal to zero.

Then rewrite the two resulting equations in terms of the parameters Hij and

Sij (i, j ¼ 1, 2)

c1(H11 � US11)þ c2(H12 � US12) ¼ 0 (9A:4a)

c1(H12 � US12)þ c2(H22 � US22) ¼ 0 (9A:4b)

3. Set H11 ¼ H22, S11 ¼ S22 ¼ 1, and S12 ¼ 0

4. Write determinantal equations

H11 � U H12

H12 H11 � U

����
���� (9A:5)
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noting that c1 and c2 are the variables. Solution of the resulting determinant

yields the energies

U1 ¼ H11 þ H12 (9A:6a)

U2 ¼ H11 � H12 (9A:6b)

of the two levels. The ratio c1/c2 is found to be þ1 for the orbital with energy

U1 and 21 for the orbital with energy U2. The coefficient c1 is determined by

the normalization condition kcjcl ¼ 1. The final result is that the wavefunc-

tions are

jc1l ¼
1ffiffiffi
2
p (jf1lþ jf2l) (energy U1) (9A:7a)

jc2l ¼
1ffiffiffi
2
p (jf1l� jf2l) (energy U2) (9A:7b)

for the lower and the upper states, since H11 and H12 are both negative.

In the HMO description of ground-state H2
þ and C2H4

þ, the single electron

occupies the lower level. For ethylene in its ground state, the two p electrons

occupy the lower level of this diamagnetic molecule.

It is important to be able to establish the energy levels for linear conjugated

systems of n atoms. Each of the n molecular orbitals is taken to be a linear combi-

nation of n atomic orbitals (Eq. 9A.1). The secular determinant is set equal to zero.

The integrals Hij and Sij are the numerical parameters already encountered. Thus,

generalizing Eq. 9A.5, one has

H1n�US1n � � � � � � � � � � � � � � � � � � � � � � � � � � � Hnn�USnn

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

H13�US13 H23�US23 H33�US33 � � � � � � H3n�US3n

H12�US12 H22�US22 H23�US23 � � � � � � H2n�US2n

H11�US11 H12�US12 H13�US13 � � � � � � H1n�US1n

������������

������������

¼ 0

(9A:8)

where the rows are arranged in increasing order of the energy Hii. The following

simplifying assumptions are made:

1. Sii ¼ 1, Sij ¼ 0 if i = j.

2. All Hij (i = j) ¼ b if atoms are bonded and zero otherwise. The numerical

parameter b is called the resonance integral (a negative quantity).

3. All Hii ¼ a. The numerical parameter a is called the Coulomb integral (a

negative quantity).

These symbols, used as matrix elements, should not be confused with the spin

functions a and b used elsewhere in this book.
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Application of Eq. 9A.7 to the allyl molecule leads to the determinantal equation

a� U b 0

b a� U b

0 b a� U

�������

�������
¼ 0 (9A:9a)

On dividing all terms by b and making the substitution x ¼ (a 2 U )/b, one obtains

the determinantal equation

x 1 0

1 x 1

0 1 x

������

������
¼ 0 (9A:9b)

The three eigenvalues, obtained by expansion of the determinant, and the corre-

sponding wavefunctions are

U3 ¼ a�
ffiffiffi
2
p

b c3 ¼
1

2
f1 �

1ffiffiffi
2
p f2 þ

1

2
f3 (9A:10a)

U2 ¼ a c2 ¼
1ffiffiffi
2
p f1 þ 0f2 �

1ffiffiffi
2
p f3 (9A:10b)

U1 ¼ aþ
ffiffiffi
2
p

b c1 ¼
1

2
f1 þ

1ffiffiffi
2
p f2 þ

1

2
f3 (9A:10c)

The orbital energy levels for and spin configurations of the allyl radical, cation

and anion are shown in Fig. 9A.1.

The coefficients for the set of corresponding molecular orbitals can be obtained

from the secular determinant (Eq. 9A.9b) by writing each line as an equation and

substituting each eigenvalue (x ¼ �
ffiffiffi
2
p

, 0 or
ffiffiffi
2
p

) in turn, and by applying the nor-

malization condition (Eq. 9.3)

Calculation of the four Hückle molecular orbitals and energies of 1,3-butadiene is

given as a problem at the end of this appendix; the results are quoted in Table 9A.1.

FIGURE 9A.1 The orbital energy levels of the allyl cation, radical and anion. Here ci

(i ¼ 1,2,3) is the 2pz atomic orbital on carbon atom i.
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The neutral molecule has four p electrons. Following the rules, these must be

assigned to the molecular orbitals of lowest energy (i.e., two to c1 and two to c2,

since b is negative) to describe the ground state.

For other conjugated systems one may proceed in an analogous fashion.

The secular determinant for linear conjugated systems contains the values a–U

on the diagonal, with b one position off the diagonal, and zero elsewhere. For

cyclic systems there are other non-zero off-diagonal terms. The resulting n � n

determinant may easily be solved by computers; however, the task is simplified if

the determinant is factorable; this can often be accomplished if of the symmetry

properties of the molecule are employed using straightforward methods of group

theory [A1,A2]. The p molecular orbitals of benzene (Table 9A.2) are entirely

determined by symmetry. For further information regarding HMO theory, see

Refs. A3–A8.

HMO References

A1. A. Streitwieser Jr., Molecular Orbital Theory, Wiley, New York, NY, U.S.A., 1961.

[Chapters 2 and 3 describe in detail the procedures for calculations of orbital energies

and wavefunctions of hydrocarbons. Chapter 4 describes refinements of the method and

Chapter 5 deals with applications to molecules having hetero (N, O, S or halogen]

atoms.

TABLE 9A.1 Molecular Orbitals and Energies of 1,3-Butadiene

Molecular Orbitals Orbital Energies

c4 ¼ 0.371f1 2 0.600f2þ 0.600f3 2 0.371f4 U4 ¼ a� 1
2

(
ffiffiffi
5
p
þ 1)b

c3 ¼ 0.600f1 2 0.371f2 2 0.371f3þ 0.600f4 U3 ¼ a� 1
2

(
ffiffiffi
5
p
� 1)b

c2 ¼ 0.600f1þ 0.371f2 2 0.371f3 2 0.600f4 U2 ¼ aþ 1
2

(
ffiffiffi
5
p
� 1)b

c1 ¼ 0.371f1þ 0.600f2þ 0.600f3þ 0.371f4 U1 ¼ aþ 1
2

(
ffiffiffi
5
p
þ 1)b

TABLE 9A.2 Molecular Orbitals and Energies of Benzene

Molecular Orbitals Orbital Energies

c(b) ¼ 1ffiffi
6
p f1 � f2 þ f3 � f4 þ f5 � f6

� �
U(b) ¼ a 22b

c(e2) ¼ 1
2
f2 � f3 þ f5 � f6

� �

c(e2) ¼ 1ffiffiffiffi
12
p 2f1 � f2 � f3 þ 2f4 � f5 � f6

� �
"

U(e2) ¼ a� b

U(e2) ¼ a� b

c(e1) ¼ 1
2
f2 þ f3 � f5 � f6

� �

c(e1) ¼ 1ffiffiffiffi
12
p 2f1 þ f2 � f3 � 2f4 � f5 þ f6

� �
"

U(e1) ¼ aþ b

U(e1) ¼ aþ b

c(a) ¼ 1ffiffi
6
p f1 þ f2 þ f3 þ f4 þ f5 þ f6

� �
U(b) ¼ aþ 2b
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HMO Problems

9A.1 Set up the secular equation for the cyclopropenyl (C3H3) radical and solve

for the orbital energies. Draw an orbital energy diagram and show the distri-

bution of electrons among the p orbitals.

9A.2 Set up the secular equation for the 1,3-butadiene and solve for the energies.

Substitute the energies into the secular equations and determine the coeffi-

cients in the four p molecular orbitals (Table 9A.1).

9A.3 The seven lowest-lying Hückel molecular orbitals

cn ¼ cn1f1 þ cn2f2 þ cn3f3 þ � � � þ cn10f10

are shown below for naphthalene, in order of increasing energy; a structure

showing the atom numbering is given in Table 9.3.

cn cn1 cn2 cn3 cn4 cn5 cn6 cn7 cn8 cn9 cn10

c7 0 20.408 0.408 0 0 0.408 20.408 0 0.408 20.408

c6 0.425 20.263 20.263 0.425 20.425 0.263 0.263 20.425 0 0

c5 0.425 0.263 20.263 20.425 0.425 0.263 20.263 20.425 0 0

c4 0 0.408 0.408 0 0 0.408 0.408 0 20.408 20.408

c3 0.400 0.174 20.174 20.400 20.400 20.174 0.174 0.400 0.347 20.347

c2 0.263 0.425 0.425 0.263 20.263 20.425 20.425 20.263 0 0

c1 0.301 0.231 0.231 0.301 0.301 0.231 0.231 0.301 0.461 0.461

(a) Without doing any calculations, sketch approximately the set of HMO

energies for naphthalene, and show the orbital occupation by electrons

for the 21, 0 and þ1 charged species.
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(b) Compare c5 with c6, and c4 with c7. What identities may be written for

corresponding cni values of the related pairs of molecular orbitals?

(c) What is the significance of a zero value of cni?

(d ) Sketch the locations of nodal planes for all these orbitals.

9A.4 Calculate the unpaired-electron populations at each of the carbon atoms in

the benzyl radical (C6H5CH2), taking into account the following attributes

of odd-alternant hydrocarbons.

1. There are two possible numbers of starred atoms, depending on the start-

ing point. Choose the configuration with the larger number of starred

atoms.

2. The unpaired electron resides in a non-bonding orbital, for which one

notes that (a) the molecular-orbital coefficients of unstarred atoms are

zero, and (b) the sum of the molecular-orbital coefficients of atoms

about a starred position is zero.

Starting at one of the starred atoms in the benzene ring, assign the relative values of

coefficients at each atom. From the requirement that the sum of the squares of the

coefficients is equal to 1, ascertain the unpaired-electron population at each position.
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